图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际计算热科学期刊
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN 打印: 1940-2503
ISSN 在线: 1940-2554

国际计算热科学期刊

DOI: 10.1615/ComputThermalScien.2014011507
pages 439-450

MHD TRANSIENT NANOFLUID FLOW AND HEAT TRANSFER FROM A MOVING VERTICAL CYLINDER WITH TEMPERATURE OSCILLATION

V. Rajesh
Department of Engineering Mathematics, GITAM University Hyderabad Campus, Rudraram, Patancheru Mandal, Medak Dist.-502 329, Andhra Pradesh, India
O. Anwar Bég
Fluid Mechanics, Nanosystems and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, University of Salford, Manchester M54WT, United Kingdom

ABSTRACT

In the present study, the effects of magnetohydrodynamics (MHD) on the transient free convection flow of a viscous, electrically conducting, and incompressible nanofluid past a moving semi-infinite vertical cylinder with temperature oscillation is studied. The fluid is water-based nanofluid containing nanoparticles of copper (Cu) with a nanoparticle volume fraction range less than or equal to 0.04. The Tiwari-Das nanofluid model [Int. J. Heat Mass Transf., 50(9-10):2002-2018 (2007)] is employed. The dimensionless governing partial differential equations are solved by using a robust, well-tested, implicit finite difference method of Crank-Nicolson type. The obtained results are benchmarked with previously published work for special cases of the problem in order to access the accuracy of the numerical method and found to be in excellent agreement. In particular, the effect of significant parameters, such as magnetic parameter, phase angle, nanoparticle volume fraction, and thermal Grashof number, on the flow and heat transfer characteristics is discussed. The present simulations are relevant to magnetic nanomaterial thermal flow processing in the chemical engineering and metallurgy industries.