图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Effects of High Temperature on Mesoscale Properties of Concrete

卷 8, 册 1, 2010, pp. 113-129
DOI: 10.1615/IntJMultCompEng.v8.i1.90
Get accessGet access

摘要

This paper presents a complete experimental methodology for identification of parameters that are necessary for mesoscale numerical modeling and analysis of damage and degradation of concrete at high temperatures. For this purpose, a series of specialized mesoscale experiments are devised and carried out. The experiments target mechanical and fracture properties as well as characteristics of heat transfer of the main mesoscopic phases of concrete, namely, cement mortar, limestone aggregate, and their interface. The tests are conduced on samples that were exposed both to room environment and high temperatures. Results are presented in terms of temperature-dependent material characteristics.

参考文献
  1. Bolander, J. E. and Saito, S., Fracture analyses using spring networks with random geometry. DOI: 10.1016/S0013-7944(98)00069-1

  2. Caliskan, S., Aggregate/mortar interface: Influence of silica fume at the micro- and macro-level.

  3. Camborde, F., Mariotti, C., and Donze, F. V., Numerical study of rock and concrete behaviour by discrete element modelling. DOI: 10.1016/S0266-352X(00)00013-6

  4. Černý, R., Madĕra, J., Podĕbradská, J., Toman, J., Drchalová, J., Klečka, T., Jurek, K., and Rovnaníková, P., The effect of compressive stress on thermal and hygric properties of portland cement mortar in wide temperature and moisture ranges. DOI: 10.1016/S0008-8846(00)00310-0

  5. Černý, R., Toman, J., and Šesták, J., Measuring the effective specific heat of building materials. DOI: 10.1016/0040-6031(96)02823-7

  6. Červenka, J. and Papanikolaou, V. K., Three dimensional combined fracture-plastic material model for concrete. DOI: 10.1016/j.ijplas.2008.01.004

  7. Červenka, V., Jendele, L., and Červenka, J., Atena Program Documentation.

  8. De Sa, C., Benboudjema, E., Duong, K., and Sicard, J., A meso-scale approach for the modeling of concrete behavior at high temperatures.

  9. Fu, Y. F., Wong, Y. L., Poon, C. S., and Tang, C. A., Numerical tests of thermal cracking induced by temperature gradient in cement-based composites under thermal loads. DOI: 10.1016/j.cemconcomp.2006.09.002

  10. Häfner, S., Eckardt, S., Luther, T., and Könke, C., Mesoscale modeling of concrete: Geometry and numerics. DOI: 10.1016/j.compstruc.2005.10.003

  11. Hillerborg, A., Modéer, M., and Petersson, P.-E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. DOI: 10.1016/0008-8846(76)90007-7

  12. Hordijk, D. A., Local approach to fatigue of concrete.

  13. Horsch, T. and Wittmann, F. H., Three-dimensional numerical concrete applied to investigate effective properties of composite materials.

  14. Kwan, A. K. H., Wang, Z. M., and Chan, H. C., Mesoscopic study of concrete II: Nonlinear finite element analysis. DOI: 10.1016/S0045-7949(98)00178-3

  15. Lilliu, G. and van Mier, J. G. M., 3d Lattice type fracture model for concrete. DOI: 10.1016/S0013-7944(02)00158-3

  16. Lopez, C. M., Carol, I., and Aguado, A., Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior. DOI: 10.1617/s11527-007-9314-1

  17. Lopez, C. M., Carol, I., and Aguado, A., Meso-structural study of concrete fracture using interface elements. II: Compression. DOI: 10.1617/s11527-007-9312-3

  18. Lopez, C. M., Idiart, A., and Carol, I., Mesomechanical analysis of concrete deterioration including time dependence.

  19. Menou, A., Mounajed, G., Boussa, H., La Borderie, C., and Lafdi, K., Thermal damage approach of concrete: Application to specimens subjected to combined compressive and high temperature loads.

  20. RILEM TC-50, FMC determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams.

  21. Roelfstra, P. E., Sadouki, H., and Wittmann, F. H., Le Béton numérique. DOI: 10.1007/BF02472402

  22. Tang, K. W., Zhang, C. H., and Shi, J. J., A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete. DOI: 10.1007/s11431-008-6005-2

  23. Tasong, W. S., Lynsdale, C. J., and Cripps, J. C., Aggregate-cement paste interface. II: Influence of aggregate physical properties. DOI: 10.1016/S0008-8846(98)00126-4

  24. Tasong, W. A., Lynsdale, C. J., and Cripps, J. C., Aggregate-cement paste interface part I. Influence of aggregate geochemistry. DOI: 10.1016/S0008-8846(99)00086-1

  25. Toman, J. and Černý, R., High-temperature measurement of the specific heat of building materials.

  26. Toman, J., Koudelová, P., and Černý, R., A measuring method for the determination of linear thermal expansion of porous materials at high temperatures. DOI: 10.1068/htwu36

  27. Ueda, T., Hasan, M., Nagai, K., Sato, Y., and Wang, L. C., Mesoscale simulation of influence of frost damage on mechanical properties of concrete. DOI: 10.1061/(ASCE)0899-1561(2009)21:6(244)

  28. Willam, K., Rhee, I., and Xi, Y., Thermal degradation of heterogeneous concrete materials. DOI: 10.1061/(ASCE)0899-1561(2005)17:3(276)

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain