图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v6.i6.40
pages 549-562

Investigation of the Dynamic Behavior of Bridged Nanotube Resonators by Dissipative Particle Dynamics Simulation

Orly Liba
School of Electrical Engineering, Department of Physical Electronics, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
Yael Hanein
School of Electrical Engineering, Department of Physical Electronics, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Israel
David Kauzlaric
Laboratory for Microsystems Simulation, Department of Microsystems Engineering, University of Freiburg, Germany
Andreas Greiner
Laboratory for Microsystems Simulation, Department of Microsystems Engineering, University of Freiburg, Germany
Jan G. Korvink
Laboratory for Microsystems Simulation, Department of Microsystems Engineering, University of Freiburg, Germany

ABSTRACT

Carbon nanotube (CNT)-based bridged resonators are investigated using a mesoscale dissipative particle dynamics model. Owing to their nanometer size, low mass, and ultrahigh resonance frequency, CNT-based resonators have the potential to become excellent tension, strain, or mass sensors. In this report, the resonance frequency of tubes of different lengths and in different states of tension is extracted from the numerical results and shown to fit with continuum elastic theory. Since in many cases, CNTs are produced slacked rather than taut, the effect of slackness on the resonance frequencies is presented and shown to reduce the sensitivity of the resonator considerably. According to our simulations, temperature has a major effect on the resonance frequencies and should be considered when analyzing bridged resonators. The investigation includes measurements of the vibration amplitude at different temperature, tube length, and strain. The intrinsic quality factor of carbon nanotube resonators is also discussed. Finally, the simulations presented here show that the dissipative particle dynamics model is suited to describe CNT devices such as resonator-based sensors.

REFERENCES

  1. Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D., and Zettl, A., Ultrahigh Frequency Nanotube Resonators. DOI: 10.1103/PhysRevLett.97.087203

  2. Sazonova, V., Yaish, Y., Uestuenel, H., Roundy, D., Arias, T. A., and McEuen, P. L., A Tunable Carbon Nanotube Electromechanical Oscillator. DOI: 10.1038/nature02905

  3. Poncharal, P., Wang, Z. L., Ugarte, D., and de Heer, W. A., Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. DOI: 10.1126/science.283.5407.1513

  4. Li, C. and Chou, T. W., Mass Detection Using Carbon Nanotube-Based Nanomechanical Resonators. DOI: 10.1063/1.1764933

  5. Witkamp, B., Poot, M., and van der Zant, H. S. J., Bending-Mode Vibration of a Suspended Nanotube Resonator. DOI: 10.1021/nl062206p

  6. Rabieirad, L., Kim, S., Shim, M., and Mohammadi, S., Doubly Clamped Single-Walled Carbon Nanotube Resonators Operating in mhz Frequencies. DOI: 10.1109/NANO.2005.1500854

  7. Arroyo, M. and Belytschko, T., Continuum Mechanics Modeling and Simulation of Carbon Nanotubes. DOI: 10.1007/s11012-005-2133-y

  8. Sears, A. and Batra, R. C., Macroscopic Properties of Carbon Nanotubes from Molecular-Mechanics Simulations. DOI: 10.1103/PhysRevB.69.235406

  9. Hoogerbrugge, P. J. and Koelman, J., Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. DOI: 10.1209/0295-5075/19/3/001

  10. Liba, O., Hanein, Y., Abrams, Z. R., Kauzlaric, D., Greiner, A., and Korvink, J. G., Dissipative Particle Dynamics Model of Carbon Nanotubes. DOI: 10.1080/08927020802209909

  11. Espanol, P. and Warren, P., Statistical Mechanics of Dissipative Particle Dynamics. DOI: 10.1209/0295-5075/30/4/001

  12. Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G., and Parpia, J. M., Measurement of Mechanical Resonance and Losses in Nanometer Scale Silicon Wires. DOI: 10.1063/1.124554

  13. Garcia-Sanchez, D., San Paulo, A., Esplandiu, M. J., Perez-Murano, F., Forro, L., Aguasca, A., and Bachtold, A., Mechanical Detection of Carbon Nanotube Resonator Vibrations. DOI: 10.1103/PhysRevLett.99.085501

  14. Abrams, Z. R., Ioffe, Z., Tsukernik, A., Cheshnovsky, O., and Hanein, Y., A Complete Scheme for Creating Predefined Networks of Individual Carbon Nanotubes. DOI: 10.1021/nl071058f

  15. Abrams, Z. R. and Hanein, Y., Tube-Tube and Tube-Surface Interactions in Straight Suspended Carbon Nanotube Structures. DOI: 10.1021/jp063392q

  16. Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations.

  17. Postma, H. W. C., Kozinsky, I., Husain, A., and Roukes, M. L., Dynamic Range of Nanotubeand Nanowire-Based Electromechanical Systems. DOI: 10.1063/1.1929098

  18. Babic, B., Furer, J., Sahoo, S., Farhangfar, S., and Schonenberger, C., Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes. DOI: 10.1021/nl0344716

  19. Peters, E. A. J. F., Elimination of Time Step Effects in DPD. DOI: 10.1209/epl/i2004-10010-4

  20. Landau, L. D. and Lifshitz, E. M., Theory of Elasticity.

  21. Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N., and Treacy, M. J., Youngs Modulus of Single-Walled Nanotubes. DOI: 10.1103/PhysRevB.58.14013

  22. Timoshenko, S. and Gere, J. M., Mechanics of Materials.

  23. Sapmaz, S., Blanter, Y. M., Gurevich, L., and van der Zant, H. S. J., Carbon Nanotubes as Nanoelectromechanical Systems. DOI: 10.1021/nn402968k

  24. Dequesnes, M., Tang, Z., and Aluru, N. R., Static and Dynamic Analysis of Carbon Nanotube-Based Switches. DOI: 10.1115/1.1751180

  25. Ustunel, H., Roundy, D., and Arias, T. A., Modeling a Suspended Nanotube Oscillator. DOI: 10.1021/nl0481371

  26. Nayfeh, A. H., Kreider,W., and Anderson, T. J., Investigation of Natural Frequencies and Mode Shapes of Buckled Beams. DOI: 10.2514/3.12669

  27. Jiang, H., Yu, M. F., Liu, B., and Huang, Y., Intrinsic Energy Loss Mechanisms in a Cantilevered Carbon Nanotube Beam Oscillator. DOI: 10.1103/PhysRevLett.93.185501

  28. Lu, P., Lee, H. P., Lu, C., and Chen, H. B., Thermoelastic Damping in Cylindrical Shells with Application to Tubular Oscillator Structures. DOI: 10.1016/j.ijmecsci.2007.09.016

  29. Ono, T., Sugimoto, S., Miyashita, H., and Esashi, M., Mechanical Energy Dissipation of Multiwalled Carbon Nanotube in Ultrahigh Vacuum. DOI: 10.1143/JJAP.42.L683

  30. Zener, C., Elasticity and Anelasticity of Metals.

  31. Avalos, J. B. and Mackie, A. D., Dissipative Particle Dynamics with Energy Conservation. DOI: 10.1209/epl/i1997-00515-8

  32. Espanol, P., Dissipative Particle Dynamics with Energy Conservation. DOI: 10.1209/epl/i1997-00515-8

  33. Pastewka, L., Kauzlaric, D., Greiner, A., and Korvink, J. G., Thermostat with a Local Heat-Bath Coupling for Exact Energy Conservation in Dissipative Particle Dynamics. DOI: 10.1103/PhysRevE.73.037701

  34. Cleland, A. N. and Roukes, M. L., Noise Processes in Nanomechanical Resonators. DOI: 10.1063/1.1499745

  35. Lifshitz, R., Phonon-Mediated Dissipation in Micro- and Nano-Mechanical Systems. DOI: 10.1016/S0921-4526(02)00524-0

  36. Kiselev, A. A. and Iafrate, G. J., Phonon Dynamics and Phonon Assisted Losses in Euler-Bernoulli Nanobeams. DOI: 10.1103/PhysRevB.77.205436

  37. Akhiezer, A., On the Absorption of Sound in Metals.

  38. Lifshitz, R. and Roukes, M. L., Thermoelastic Damping in Micro- and Nanomechanical Systems. DOI: 10.1103/PhysRevB.61.5600

  39. Grujicic, M., Cao, G., and Roy, W. N., Computational Analysis of the Lattice Contribution to Thermal Conductivity of Single-Walled Carbon Nanotubes. DOI: 10.1007/s10853-005-1215-5

  40. Hone, J., Llaguno, M. C., Biercuk, M. J., Johnson, A. T., Batlogg, B., Benes, Z., and Fischer, J. E, Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials. DOI: 10.1007/s003390201277

  41. Ru, C. Q., Encyclopedia of Nanoscience and Nanotechnology.

  42. Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Kataura, H., Suzuki, S., Achiba, Y., Nishibori, E., Takata, M., and Sakata, M., Thermal Expansion of Single-Walled Carbon Nanotube (swnt) Bundles: X-ray Diffraction Studies. DOI: 10.1103/PhysRevB.64.241402


Articles with similar content:

NEAR-FIELD AND FAR-FIELDMODELLING OF SURFACEWAVES SCATTERED BY AFM TIP
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2010, issue
Gilles Parent, David Lacroix, Jerome Muller, Sebastien Fumeron, Gerard Jeandel
THERMOMECHANICAL ASPECTS OF ENERGETIC CRYSTAL COMBUSTION
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
W. L. Elban, C. Cm. Wu, Ronald W. Armstrong, A. L. Ramaswamy
MODULATION OF THERMOELECTRIC PROPERTIES OF CARBON NANOTUBES USING COHERENT PHONONS
International Heat Transfer Conference 16, Vol.17, 2018, issue
Junichiro Shiomi, Masato Ohnishi
THEORETICAL MODELING OF SPRAY DROP DEFORMATION AND BREAKUP IN THE MULTIMODE BREAKUP REGIME
Atomization and Sprays, Vol.25, 2015, issue 10
H. Wu, Shinan Chang, L. Ding, J. M. Thompson, Chen Wang
CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Somnath Ghosh, Subhendu Chakraborty, Jiaxi Zhang