图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Investigation of the Dynamic Behavior of Bridged Nanotube Resonators by Dissipative Particle Dynamics Simulation

卷 6, 册 6, 2008, pp. 549-562
DOI: 10.1615/IntJMultCompEng.v6.i6.40
Get accessGet access

摘要

Carbon nanotube (CNT)-based bridged resonators are investigated using a mesoscale dissipative particle dynamics model. Owing to their nanometer size, low mass, and ultrahigh resonance frequency, CNT-based resonators have the potential to become excellent tension, strain, or mass sensors. In this report, the resonance frequency of tubes of different lengths and in different states of tension is extracted from the numerical results and shown to fit with continuum elastic theory. Since in many cases, CNTs are produced slacked rather than taut, the effect of slackness on the resonance frequencies is presented and shown to reduce the sensitivity of the resonator considerably. According to our simulations, temperature has a major effect on the resonance frequencies and should be considered when analyzing bridged resonators. The investigation includes measurements of the vibration amplitude at different temperature, tube length, and strain. The intrinsic quality factor of carbon nanotube resonators is also discussed. Finally, the simulations presented here show that the dissipative particle dynamics model is suited to describe CNT devices such as resonator-based sensors.

参考文献
  1. Peng, H. B., Chang, C. W., Aloni, S., Yuzvinsky, T. D., and Zettl, A., Ultrahigh Frequency Nanotube Resonators. DOI: 10.1103/PhysRevLett.97.087203

  2. Sazonova, V., Yaish, Y., Uestuenel, H., Roundy, D., Arias, T. A., and McEuen, P. L., A Tunable Carbon Nanotube Electromechanical Oscillator. DOI: 10.1038/nature02905

  3. Poncharal, P., Wang, Z. L., Ugarte, D., and de Heer, W. A., Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. DOI: 10.1126/science.283.5407.1513

  4. Li, C. and Chou, T. W., Mass Detection Using Carbon Nanotube-Based Nanomechanical Resonators. DOI: 10.1063/1.1764933

  5. Witkamp, B., Poot, M., and van der Zant, H. S. J., Bending-Mode Vibration of a Suspended Nanotube Resonator. DOI: 10.1021/nl062206p

  6. Rabieirad, L., Kim, S., Shim, M., and Mohammadi, S., Doubly Clamped Single-Walled Carbon Nanotube Resonators Operating in mhz Frequencies. DOI: 10.1109/NANO.2005.1500854

  7. Arroyo, M. and Belytschko, T., Continuum Mechanics Modeling and Simulation of Carbon Nanotubes. DOI: 10.1007/s11012-005-2133-y

  8. Sears, A. and Batra, R. C., Macroscopic Properties of Carbon Nanotubes from Molecular-Mechanics Simulations. DOI: 10.1103/PhysRevB.69.235406

  9. Hoogerbrugge, P. J. and Koelman, J., Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. DOI: 10.1209/0295-5075/19/3/001

  10. Liba, O., Hanein, Y., Abrams, Z. R., Kauzlaric, D., Greiner, A., and Korvink, J. G., Dissipative Particle Dynamics Model of Carbon Nanotubes. DOI: 10.1080/08927020802209909

  11. Espanol, P. and Warren, P., Statistical Mechanics of Dissipative Particle Dynamics. DOI: 10.1209/0295-5075/30/4/001

  12. Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G., and Parpia, J. M., Measurement of Mechanical Resonance and Losses in Nanometer Scale Silicon Wires. DOI: 10.1063/1.124554

  13. Garcia-Sanchez, D., San Paulo, A., Esplandiu, M. J., Perez-Murano, F., Forro, L., Aguasca, A., and Bachtold, A., Mechanical Detection of Carbon Nanotube Resonator Vibrations. DOI: 10.1103/PhysRevLett.99.085501

  14. Abrams, Z. R., Ioffe, Z., Tsukernik, A., Cheshnovsky, O., and Hanein, Y., A Complete Scheme for Creating Predefined Networks of Individual Carbon Nanotubes. DOI: 10.1021/nl071058f

  15. Abrams, Z. R. and Hanein, Y., Tube-Tube and Tube-Surface Interactions in Straight Suspended Carbon Nanotube Structures. DOI: 10.1021/jp063392q

  16. Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations.

  17. Postma, H. W. C., Kozinsky, I., Husain, A., and Roukes, M. L., Dynamic Range of Nanotubeand Nanowire-Based Electromechanical Systems. DOI: 10.1063/1.1929098

  18. Babic, B., Furer, J., Sahoo, S., Farhangfar, S., and Schonenberger, C., Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes. DOI: 10.1021/nl0344716

  19. Peters, E. A. J. F., Elimination of Time Step Effects in DPD. DOI: 10.1209/epl/i2004-10010-4

  20. Landau, L. D. and Lifshitz, E. M., Theory of Elasticity.

  21. Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N., and Treacy, M. J., Youngs Modulus of Single-Walled Nanotubes. DOI: 10.1103/PhysRevB.58.14013

  22. Timoshenko, S. and Gere, J. M., Mechanics of Materials.

  23. Sapmaz, S., Blanter, Y. M., Gurevich, L., and van der Zant, H. S. J., Carbon Nanotubes as Nanoelectromechanical Systems. DOI: 10.1021/nn402968k

  24. Dequesnes, M., Tang, Z., and Aluru, N. R., Static and Dynamic Analysis of Carbon Nanotube-Based Switches. DOI: 10.1115/1.1751180

  25. Ustunel, H., Roundy, D., and Arias, T. A., Modeling a Suspended Nanotube Oscillator. DOI: 10.1021/nl0481371

  26. Nayfeh, A. H., Kreider,W., and Anderson, T. J., Investigation of Natural Frequencies and Mode Shapes of Buckled Beams. DOI: 10.2514/3.12669

  27. Jiang, H., Yu, M. F., Liu, B., and Huang, Y., Intrinsic Energy Loss Mechanisms in a Cantilevered Carbon Nanotube Beam Oscillator. DOI: 10.1103/PhysRevLett.93.185501

  28. Lu, P., Lee, H. P., Lu, C., and Chen, H. B., Thermoelastic Damping in Cylindrical Shells with Application to Tubular Oscillator Structures. DOI: 10.1016/j.ijmecsci.2007.09.016

  29. Ono, T., Sugimoto, S., Miyashita, H., and Esashi, M., Mechanical Energy Dissipation of Multiwalled Carbon Nanotube in Ultrahigh Vacuum. DOI: 10.1143/JJAP.42.L683

  30. Zener, C., Elasticity and Anelasticity of Metals.

  31. Avalos, J. B. and Mackie, A. D., Dissipative Particle Dynamics with Energy Conservation. DOI: 10.1209/epl/i1997-00515-8

  32. Espanol, P., Dissipative Particle Dynamics with Energy Conservation. DOI: 10.1209/epl/i1997-00515-8

  33. Pastewka, L., Kauzlaric, D., Greiner, A., and Korvink, J. G., Thermostat with a Local Heat-Bath Coupling for Exact Energy Conservation in Dissipative Particle Dynamics. DOI: 10.1103/PhysRevE.73.037701

  34. Cleland, A. N. and Roukes, M. L., Noise Processes in Nanomechanical Resonators. DOI: 10.1063/1.1499745

  35. Lifshitz, R., Phonon-Mediated Dissipation in Micro- and Nano-Mechanical Systems. DOI: 10.1016/S0921-4526(02)00524-0

  36. Kiselev, A. A. and Iafrate, G. J., Phonon Dynamics and Phonon Assisted Losses in Euler-Bernoulli Nanobeams. DOI: 10.1103/PhysRevB.77.205436

  37. Akhiezer, A., On the Absorption of Sound in Metals.

  38. Lifshitz, R. and Roukes, M. L., Thermoelastic Damping in Micro- and Nanomechanical Systems. DOI: 10.1103/PhysRevB.61.5600

  39. Grujicic, M., Cao, G., and Roy, W. N., Computational Analysis of the Lattice Contribution to Thermal Conductivity of Single-Walled Carbon Nanotubes. DOI: 10.1007/s10853-005-1215-5

  40. Hone, J., Llaguno, M. C., Biercuk, M. J., Johnson, A. T., Batlogg, B., Benes, Z., and Fischer, J. E, Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials. DOI: 10.1007/s003390201277

  41. Ru, C. Q., Encyclopedia of Nanoscience and Nanotechnology.

  42. Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Kataura, H., Suzuki, S., Achiba, Y., Nishibori, E., Takata, M., and Sakata, M., Thermal Expansion of Single-Walled Carbon Nanotube (swnt) Bundles: X-ray Diffraction Studies. DOI: 10.1103/PhysRevB.64.241402

对本文的引用
  1. Hanein Yael, Carbon nanotube integration into MEMS devices, physica status solidi (b), 247, 11-12, 2010. Crossref

  2. Kauzlarić David, Meier Julia T., Español Pep, Succi Sauro, Greiner Andreas, Korvink Jan G., Bottom-up coarse-graining of a simple graphene model: The blob picture, The Journal of Chemical Physics, 134, 6, 2011. Crossref

  3. Kauzlarić David, Español Pep, Greiner Andreas, Succi Sauro, Three Routes to the Friction Matrix and Their Application to the Coarse-Graining of Atomic Lattices, Macromolecular Theory and Simulations, 20, 7, 2011. Crossref

  4. Kauzlarić David, Español Pep, Greiner Andreas, Succi Sauro, Markovian dissipative coarse grained molecular dynamics for a simple 2D graphene model, The Journal of Chemical Physics, 137, 23, 2012. Crossref

  5. Kauzlarić D, Meier J T, Español P, Greiner A, Succi S, Markovian equations of motion for non-Markovian coarse-graining and properties for graphene blobs, New Journal of Physics, 15, 12, 2013. Crossref

  6. Kauzlarić David, Dynowski Marek, Pastewka Lars, Greiner Andreas, Korvink Jan G., SYMPLER: SYMbolic ParticLE simulatoR with grid-computing interface, Computer Physics Communications, 185, 3, 2014. Crossref

  7. Kauzlaric David, Liba Orly, Hanein Yael, Espanol Pep, Greiner Andreas, Succi Sauro, Korvink Jan G., Top-down vs. bottom-up coarse-graining of graphene and CNTs for nanodevice simulation, 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2012. Crossref

  8. Ya׳akobovitz Assaf, Bar-Dea Lital, Hanein Yael, Krylov Slava, Three-dimensional dynamic behavior of suspended single wall carbon nanotubes, International Journal of Mechanical Sciences, 105, 2016. Crossref

  9. Ya'akobovitz Assaf, Krylov Slava, Hanein Yael, Large Deflections Mechanical Analysis of a Suspended Single-Wall Carbon Nanotube under Thermoelectrical Loading, Journal of Nanomaterials, 2011, 2011. Crossref

  10. Azhar Mueed, Greiner Andreas, Korvink Jan G., Kauzlarić David, Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers, The Journal of Chemical Physics, 144, 24, 2016. Crossref

  11. Gu Ruifeng, Wang Lifeng, He Xiaoqiao, Free vibration of super-graphene carbon nanotube networks via a beam element based coarse-grained method, Materials Research Express, 4, 8, 2017. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain