图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.2016017957
pages 585-606

POSTBUCKLING OF NANOCOMPOSITE PLATE REINFORCED WITH RANDOMLY ORIENTED AND DISPERSED CNTS MODELED THROUGH RSA TECHNIQUE

Ashish Srivastava
Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur, India
Dinesh Kumar
Mechanical Engineering Department, Malaviya National Institute of Technology, Jaipur, 302017, India

ABSTRACT

The aim of the present paper is to study the buckling and postbuckling behavior of carbon nanotube (CNT)-reinforced magnesium (Mg) nanocomposite plates. A Boolean-based random sequential adsorption (RSA) technique is employed to model a representative volume element (RVE) with randomly oriented and positioned CNTs using uniform and normal distributions. The elastic properties of the resulting nanocomposite are evaluated using that RVE. Further, the evaluated stiffness properties of CNT-Mg nanocomposite are utilized to investigate the effects of CNT reinforcement on buckling and postbuckling behavior of the nanocomposite plate. Buckling and postbuckling studies of the nanocomposite plate are carried out using nonlinear finite element methods formulation based on the first-order shear deformation theory and von Karman's assumptions. The arc-length method is utilized to solve the resulting nonlinear finite-element algebraic equations. It is concluded that CNT reinforcement leads to substantial increase in the stiffness properties of soft matrix materials as compared to the stiff matrix materials, and hence percentage enhancements in buckling load and postbuckling strength of CNT-reinforced soft matrix materials are found to be more pronounced than those of CNT-reinforced stiff matrix materials.


Articles with similar content:

SIMPLIFIED BUCKLING ANALYSIS OF STIFFENED LAMINATED SANDWICH PLATES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 1
Husam Al Qablan, Hazim M. Dwairi, Samer Rabab'ah, Omar Al Hattamleh
BOUNDARY ELEMENT METHOD MODELLING OF NANOCOMPOSITES
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 1
Piotr Fedelinski, Jacek Ptaszny, Grzegorz Dziatkiewicz
NONLINEAR MULTISCALE HOMOGENIZATION OF CARBON NANOTUBE REINFORCED COMPOSITES WITH INTERFACIAL SLIPPAGE
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 4
Dimitris Savvas, Vissarion Papadopoulos
Hierarchical Multiscale Modeling of Nanotube-Reinforced Polymer Composites
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 5
R. Naghdabad, Jaafar Ghanbari
NONLINEAR STABILITY ANALYSIS OF AN FGM PLATE UNDER NONUNIFORM IN-PLANE LOADING
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Kanishk Sharma, Anil Gite, Dinesh Kumar