图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

ENERGY-PRESERVING MUSCLE TISSUE MODEL: FORMULATION AND COMPATIBLE DISCRETIZATIONS

卷 10, 册 2, 2012, pp. 189-211
DOI: 10.1615/IntJMultCompEng.2011002360
Get accessGet access

摘要

In this paper, we propose a muscle tissue model-valid for striated muscles, in general, and for the myocardium, in particular-based on a multiscale physiological description. This model extends and refines an earlier-proposed formulation by allowing one to account for all major energy exchanges and balances, from the chemical activity coupled with oxygen supply to the production of actual mechanical work, namely, the biological function of the tissue. We thus perform a thorough analysis of the energy mechanisms prevailing at the various scales and proceed to propose a complete discretization strategy-in time and space-respecting the same balance laws. This will be crucial in future works to adequately model the many important physiological-normal and pathological-phenomena associated with these energy considerations.

参考文献
  1. Balaban, R., The role of Ca<sup>2+</sup> signaling in the coordination of mitochondrial ATP production with cardiac work. DOI: 10.1016/j.bbabio.2009.05.011

  2. Balzani, D., Neff, P., Schr&ouml;der, J., and Holzapfel, G., A polyconvex framework for soft biological tissues, adjustment to experimental data. DOI: 10.1016/j.ijsolstr.2005.07.048

  3. Bestel, J., Mod&egrave;le diff&eacute;rentiel de la contraction musculaire contr&ocirc;l&eacute;e: Application au syst&egrave;me cardio-vasculaire.

  4. Bestel, J., Cl&eacute;ment, F., and Sorine, M., A Biomechanical Model of Muscle Contraction.

  5. Brezzi, F. and Fortin, M. , Mixed and Hybrid Finite Element Methods.

  6. Chabiniok, R., Chapelle, D., Lesault, P., Rahmouni, A., and Deux, J., Validation of a biomechanical heart model using animal data with acute myocardial infarction, CI2BM09-MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling.

  7. Chapelle, D., Cl&eacute;ment, F., G&eacute;not, F., Le Tallec, P., Sorine, M., and Urquiza, J., A physiologically-based model for the active cardiacmuscle.

  8. Chapelle, D., Fern&agrave;ndez, M., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., and Zemzemi, N., Numerical simulation of the electromechanical activity of the heart. DOI: 10.1007/978-3-642-01932-6_39

  9. Ciarlet, P. and Geymonat, G., Sur les lois de comportement en &eacute;lasticit&eacute; non lin&eacute;aire.

  10. Costa, K., Holmes, J., and McCulloch, A., Modeling cardiac mechanical properties in three dimensions. DOI: 10.1098/rsta.2001.0828

  11. Fung, Y., Biomechanics: Mechanical Properties of Living Tissues.

  12. G&ouml;ktepe, S., Acharya, S., Wong, J., and Kuhl, E., Computational modeling of passive myocardium. DOI: 10.1002/cnm.1402

  13. Gonzales, O., Exact energy and momentum conserving algorithm for general models in nonlinear elasticity. DOI: 10.1016/S0045-7825(00)00189-4

  14. Hauret, P. and Le Tallec, P., Energy controlling time integration methods for nonlinear elastodynamics and low velocity impact. DOI: 10.1016/j.cma.2005.11.005

  15. Hill, V., The heat of shortening and the dynamic constants of muscle. DOI: 10.1098/rspb.1938.0050

  16. Holzapfel, G. and Ogden, R., Constitutive modelling of passive myocardium: A structurally based framework for material characterization. DOI: 10.1098/rsta.2009.0091

  17. Humphrey, J., Cardiovascular Solid Mechanics&ndash;Cells Tissues and Organs.

  18. Humphrey, J., Continuum biomechanics of soft tissues. DOI: 10.1098/rspa.2002.1060

  19. Hunter, P., McCulloch, A., and ter Keurs, H., Modelling the mechanical properties of cardiac muscle. DOI: 10.1016/S0079-6107(98)00013-3

  20. Huxley, A., Muscle structure and theories of contraction.

  21. Krejci, P., Sainte-Marie, J., Sorine, M., and Urquiza, J., Solutions to muscle fiber equations and their long time behaviour. DOI: 10.1016/j.nonrwa.2005.03.021

  22. Le Tallec, P., Numerical Analysis of Viscoelastic Problems.

  23. Le Tallec, P., Numerical methods for nonlinear three-dimensional elasticity.

  24. Le Tallec, P. and Hauret, P., Energy conservation in fluid structure interactions.

  25. Mirsky, I. and Parmley, W., Assessment of passive elastics tiffness for isolated heart muscle and the intact heart. DOI: 10.1161/​01.RES.33.2.233

  26. Moireau, P., Filtering based data assimilation for second order hyperbolic PDEs: Applications in cardiac mechanics.

  27. Nash, M. and Hunter, P., Computational mechanics of the heart–from tissue structure to ventricular function. DOI: 10.1023/A:1011084330767

  28. Raoult, A., Symmetry groups in nonlinear elasticity: An exercise in vintage mathematics. DOI: 10.3934/cpaa.2009.8.435

  29. Rivlin, R. and Ericksen, J., Stress-deformation relations for isotropic materials.

  30. Sainte-Marie, J., Chapelle, D., Cimrman, R., and Sorine, M., Modeling and estimation of the cardiac electromechanical activity. DOI: 10.1016/j.compstruc.2006.05.003

  31. Saks, V., Favier, R., Guzun, R., Schlattner, U., and Wallimann, T., Molecular system bioenergetics: Regulation of substrate supply in response to heart energy demands. DOI: 10.1113/jphysiol.2006.120584

  32. Veronda, D. and Westmann, R., Mechanical characterization of skin-finite deformation. DOI: 10.1016/0021-9290(70)90055-2

对本文的引用
  1. Marchesseau Stéphanie, Delingette Hervé, Sermesant Maxime, Ayache Nicholas, Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform, Biomechanics and Modeling in Mechanobiology, 12, 4, 2013. Crossref

  2. Marchesseau S., Delingette H., Sermesant M., Sorine M., Rhode K., Duckett S.G., Rinaldi C.A., Razavi R., Ayache N., Preliminary specificity study of the Bestel–Clément–Sorine electromechanical model of the heart using parameter calibration from medical images, Journal of the Mechanical Behavior of Biomedical Materials, 20, 2013. Crossref

  3. Talbot Hugo, Marchesseau Stéphanie, Duriez Christian, Sermesant Maxime, Cotin Stéphane, Delingette Hervé, Towards an interactive electromechanical model of the heart, Interface Focus, 3, 2, 2013. Crossref

  4. Marchesseau S., Delingette H., Sermesant M., Cabrera-Lozoya R., Tobon-Gomez C., Moireau P., Figueras i Ventura R.M., Lekadir K., Hernandez A., Garreau M., Donal E., Leclercq C., Duckett S.G., Rhode K., Rinaldi C.A., Frangi A.F., Razavi R., Chapelle D., Ayache N., Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes, Medical Image Analysis, 17, 7, 2013. Crossref

  5. Caruel M., Chabiniok R., Moireau P., Lecarpentier Y., Chapelle D., Dimensional reductions of a cardiac model for effective validation and calibration, Biomechanics and Modeling in Mechanobiology, 13, 4, 2014. Crossref

  6. Chapelle D., Moireau P., General coupling of porous flows and hyperelastic formulations—From thermodynamics principles to energy balance and compatible time schemes, European Journal of Mechanics - B/Fluids, 46, 2014. Crossref

  7. Corrado Cesare, Gerbeau Jean-Frédéric, Moireau Philippe, Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography, Journal of Computational Physics, 283, 2015. Crossref

  8. Hadjicharalambous Myrianthi, Chabiniok Radomir, Asner Liya, Sammut Eva, Wong James, Carr-White Gerald, Lee Jack, Razavi Reza, Smith Nicolas, Nordsletten David, Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI, Biomechanics and Modeling in Mechanobiology, 14, 4, 2015. Crossref

  9. Marchesseau Stephanie, Sermesant Maxime, Billet Florence, Delingette Hervé, Ayache Nicholas, Personalization of Electromechanical Models of the Cardiac Ventricular Function by Heterogeneous Clinical Data Assimilation, in Multi-Modality Cardiac Imaging, 2015. Crossref

  10. De Craene M., Marchesseau S., Heyde B., Gao H., Alessandrini M., Bernard O., Piella G., Porras A. R., Tautz L., Hennemuth A., Prakosa A., Liebgott H., Somphone O., Allain P., Makram Ebeid S., Delingette H., Sermesant M., D'hooge J., Saloux E., 3D Strain Assessment in Ultrasound (Straus): A Synthetic Comparison of Five Tracking Methodologies, IEEE Transactions on Medical Imaging, 32, 9, 2013. Crossref

  11. Pavarino L.F., Scacchi S., Zampini S., Newton–Krylov-BDDC solvers for nonlinear cardiac mechanics, Computer Methods in Applied Mechanics and Engineering, 295, 2015. Crossref

  12. Asner Liya, Hadjicharalambous Myrianthi, Chabiniok Radomir, Peresutti Devis, Sammut Eva, Wong James, Carr-White Gerald, Chowienczyk Philip, Lee Jack, King Andrew, Smith Nicolas, Razavi Reza, Nordsletten David, Estimation of passive and active properties in the human heart using 3D tagged MRI, Biomechanics and Modeling in Mechanobiology, 15, 5, 2016. Crossref

  13. Prakosa A., Sermesant M., Delingette H., Marchesseau S., Saloux E., Allain P., Villain N., Ayache N., Generation of Synthetic but Visually Realistic Time Series of Cardiac Images Combining a Biophysical Model and Clinical Images, IEEE Transactions on Medical Imaging, 32, 1, 2013. Crossref

  14. Prakosa Adityo, Sermesant Maxime, Allain Pascal, Villain Nicolas, Rinaldi C. Aldo, Rhode Kawal, Razavi Reza, Delingette Herve, Ayache Nicholas, Cardiac Electrophysiological Activation Pattern Estimation From Images Using a Patient-Specific Database of Synthetic Image Sequences, IEEE Transactions on Biomedical Engineering, 61, 2, 2014. Crossref

  15. Molléro Roch, Pennec Xavier, Delingette Hervé, Garny Alan, Ayache Nicholas, Sermesant Maxime, Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models, Biomechanics and Modeling in Mechanobiology, 17, 1, 2018. Crossref

  16. Mollero Roch, Hauser Jakob A., Pennec Xavier, Datar Manasi, Delingette Hervé, Jones Alexander, Ayache Nicholas, Heimann Tobias, Sermesant Maxime, Longitudinal Parameter Estimation in 3D Electromechanical Models: Application to Cardiovascular Changes in Digestion, in Functional Imaging and Modelling of the Heart, 10263, 2017. Crossref

  17. Pavarino L. F., Scacchi S., Verdi C., Zampieri E., Zampini S., Scalable BDDC Algorithms for Cardiac Electromechanical Coupling, in Domain Decomposition Methods in Science and Engineering XXIII, 116, 2017. Crossref

  18. Hörmann Julia M., Bertoglio Cristóbal, Nagler Andreas, Pfaller Martin R., Bourier Felix, Hadamitzky Martin, Deisenhofer Isabel, Wall Wolfgang A., Multiphysics Modeling of the Atrial Systole under Standard Ablation Strategies, Cardiovascular Engineering and Technology, 8, 2, 2017. Crossref

  19. Caruel M, Truskinovsky L, Physics of muscle contraction, Reports on Progress in Physics, 81, 3, 2018. Crossref

  20. Caforio Federica, Imperiale Sébastien, A conservative penalisation strategy for the semi-implicit time discretisation of the incompressible elastodynamics equation, Advanced Modeling and Simulation in Engineering Sciences, 5, 1, 2018. Crossref

  21. Pfaller Martin R., Hörmann Julia M., Weigl Martina, Nagler Andreas, Chabiniok Radomir, Bertoglio Cristóbal, Wall Wolfgang A., The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling, Biomechanics and Modeling in Mechanobiology, 18, 2, 2019. Crossref

  22. Molléro Roch, Pennec Xavier, Delingette Hervé, Ayache Nicholas, Sermesant Maxime, Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases, International Journal for Numerical Methods in Biomedical Engineering, 35, 2, 2019. Crossref

  23. Porras Antonio R., De Craene Mathieu, Duchateau Nicolas, Sitges Marta, Bijnens Bart H., Frangi Alejandro F., Piella Gemma, Myocardial Motion Estimation Combining Tissue Doppler and B-mode Echocardiographic Images, in Advanced Information Systems Engineering, 7908, 2013. Crossref

  24. Satkunskiene Danguole, Ratkevicius Aivaras, Kamandulis Sigitas, Venckunas Tomas, Effects of myostatin on the mechanical properties of muscles during repeated active lengthening in the mouse, Applied Physiology, Nutrition, and Metabolism, 44, 4, 2019. Crossref

  25. Le Gall Arthur, Vallée Fabrice, Chapelle Dominique, Chabiniok Radomír, Minimally-Invasive Estimation of Patient-Specific End-Systolic Elastance Using a Biomechanical Heart Model, in Functional Imaging and Modeling of the Heart, 11504, 2019. Crossref

  26. Mihalef Viorel, Passerini Tiziano, Mansi Tommaso, Multi-scale models of the heart for patient-specific simulations, in Artificial Intelligence for Computational Modeling of the Heart, 2020. Crossref

  27. Bibliography, in Artificial Intelligence for Computational Modeling of the Heart, 2020. Crossref

  28. Collin Annabelle, Imperiale Sébastien, Moireau Philippe, Gerbeau Jean-Frédéric, Chapelle Dominique, Apprehending the effects of mechanical deformations in cardiac electrophysiology: A homogenization approach, Mathematical Models and Methods in Applied Sciences, 29, 13, 2019. Crossref

  29. Molléro Roch, Neumann Dominik, Rohé Marc-Michel, Datar Manasi, Lombaert Hervé, Ayache Nicholas, Comaniciu Dorin, Ecabert Olivier, Chinali Marcello, Rinelli Gabriele, Pennec Xavier, Sermesant Maxime, Mansi Tommaso, Propagation of Myocardial Fibre Architecture Uncertainty on Electromechanical Model Parameter Estimation: A Case Study, in Functional Imaging and Modeling of the Heart, 9126, 2015. Crossref

  30. Chapelle D., Felder A., Chabiniok R., Guellich A., Deux J.-F., Damy T., Patient-Specific Biomechanical Modeling of Cardiac Amyloidosis – A Case Study, in Functional Imaging and Modeling of the Heart, 9126, 2015. Crossref

  31. Chabiniok R., Sammut E., Hadjicharalambous M., Asner L., Nordsletten D., Razavi R., Smith N., Steps Towards Quantification of the Cardiological Stress Exam, in Functional Imaging and Modeling of the Heart, 9126, 2015. Crossref

  32. Chabiniok Radomir, Bhatia Kanwal K., King Andrew P., Rueckert Daniel, Smith Nic, Manifold Learning for Cardiac Modeling and Estimation Framework, in Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges, 8896, 2015. Crossref

  33. Chapelle D., Gariah A., Moireau P., Sainte-Marie J., A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation, ESAIM: Mathematical Modelling and Numerical Analysis, 47, 6, 2013. Crossref

  34. Giffard-Roisin Sophie, Marchesseau Stéphanie, Le Folgoc Loïc, Delingette Hervé, Sermesant Maxime, Evaluation of Personalised Canine Electromechanical Models, in Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges, 8896, 2015. Crossref

  35. Chabiniok R., Moireau P., Lesault P. -F., Rahmouni A., Deux J. -F., Chapelle D., Trials on Tissue Contractility Estimation from Cardiac Cine MRI Using a Biomechanical Heart Model, in Functional Imaging and Modeling of the Heart, 6666, 2011. Crossref

  36. Caruel Matthieu, Chabiniok Radomir, Moireau Philippe, Lecarpentier Yves, Chapelle Dominique, Dimensional Reduction of Cardiac Models for Effective Validation and Calibration, in Functional Imaging and Modeling of the Heart, 7945, 2013. Crossref

  37. Berberoğlu Ezgi, Stoeck Christian, Moireau Philippe, Kozerke Sebastian, Genet Martin, Validation of Finite Element Image Registration‐based Cardiac Strain Estimation from Magnetic Resonance Images, PAMM, 19, 1, 2019. Crossref

  38. Kimmig François, Chapelle Dominique, Moireau Philippe, Thermodynamic properties of muscle contraction models and associated discrete-time principles, Advanced Modeling and Simulation in Engineering Sciences, 6, 1, 2019. Crossref

  39. This Alexandre, Boilevin‐Kayl Ludovic, Fernández Miguel A., Gerbeau Jean‐Frédéric, Augmented resistive immersed surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases, International Journal for Numerical Methods in Biomedical Engineering, 36, 3, 2020. Crossref

  40. Hoermann Julia M., Pfaller Martin R., Avena Linda, Bertoglio Cristóbal, Wall Wolfgang A., Automatic mapping of atrial fiber orientations for patient‐specific modeling of cardiac electromechanics using image registration, International Journal for Numerical Methods in Biomedical Engineering, 2019. Crossref

  41. Chabiniok Radomí­r, Bureau Gautier, Groth Alexandra, Tintera Jaroslav, Weese Jürgen, Chapelle Dominique, Moireau Philippe, Cardiac Displacement Tracking with Data Assimilation Combining a Biomechanical Model and an Automatic Contour Detection, in Functional Imaging and Modeling of the Heart, 11504, 2019. Crossref

  42. Chabiniok Radomir, Wang Vicky Y., Hadjicharalambous Myrianthi, Asner Liya, Lee Jack, Sermesant Maxime, Kuhl Ellen, Young Alistair A., Moireau Philippe, Nash Martyn P., Chapelle Dominique, Nordsletten David A., Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics, Interface Focus, 6, 2, 2016. Crossref

  43. Ruijsink Bram, Zugaj Konrad, Pushparajah Kuberan, Chabiniok Radomír, Model-Based Indices of Early-Stage Cardiovascular Failure and Its Therapeutic Management in Fontan Patients, in Functional Imaging and Modeling of the Heart, 11504, 2019. Crossref

  44. Caruel Matthieu, Moireau Philippe, Chapelle Dominique, Stochastic modeling of chemical–mechanical coupling in striated muscles, Biomechanics and Modeling in Mechanobiology, 18, 3, 2019. Crossref

  45. Marchesseau Stéphanie, Delingette Hervé, Sermesant Maxime, Rhode Kawal, Duckett Simon G., Rinaldi C. Aldo, Razavi Reza, Ayache Nicholas, Cardiac Mechanical Parameter Calibration Based on the Unscented Transform, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, 7511, 2012. Crossref

  46. Banus Jaume, Lorenzi Marco, Camara Oscar, Sermesant Maxime, Large Scale Cardiovascular Model Personalisation for Mechanistic Analysis of Heart and Brain Interactions, in Functional Imaging and Modeling of the Heart, 11504, 2019. Crossref

  47. Lluch Èric, Camara Oscar, Doste Rubén, Bijnens Bart, De Craene Mathieu, Sermesant Maxime, Wang Vicky Y., Nash Martyn P., Morales Hernán G., Calibration of a fully coupled electromechanical meshless computational model of the heart with experimental data, Computer Methods in Applied Mechanics and Engineering, 364, 2020. Crossref

  48. Ruijsink Bram, Zugaj Konrad, Wong James, Pushparajah Kuberan, Hussain Tarique, Moireau Philippe, Razavi Reza, Chapelle Dominique, Chabiniok Radomír, Chen Xiongwen, Dobutamine stress testing in patients with Fontan circulation augmented by biomechanical modeling, PLOS ONE, 15, 2, 2020. Crossref

  49. Le Gall Arthur, Vallée Fabrice, Pushparajah Kuberan, Hussain Tarique, Mebazaa Alexandre, Chapelle Dominique, Gayat Étienne, Chabiniok Radomír, Farag Ehab, Monitoring of cardiovascular physiology augmented by a patient-specific biomechanical model during general anesthesia. A proof of concept study, PLOS ONE, 15, 5, 2020. Crossref

  50. Caforio Federica, Imperiale Sébastien, Mathematical modelling of acoustic radiation force in transient shear wave elastography in the heart, ESAIM: Mathematical Modelling and Numerical Analysis, 54, 6, 2020. Crossref

  51. Regazzoni F., Dedè L., Quarteroni A., Machine learning of multiscale active force generation models for the efficient simulation of cardiac electromechanics, Computer Methods in Applied Mechanics and Engineering, 370, 2020. Crossref

  52. Regazzoni Francesco, Dedè Luca, Quarteroni Alfio, Beard Daniel A, Biophysically detailed mathematical models of multiscale cardiac active mechanics, PLOS Computational Biology, 16, 10, 2020. Crossref

  53. Regazzoni F., Quarteroni A., An oscillation-free fully staggered algorithm for velocity-dependent active models of cardiac mechanics, Computer Methods in Applied Mechanics and Engineering, 373, 2021. Crossref

  54. Kimmig François, Caruel Matthieu, Hierarchical modeling of force generation in cardiac muscle, Biomechanics and Modeling in Mechanobiology, 19, 6, 2020. Crossref

  55. Banus Jaume, Lorenzi Marco, Camara Oscar, Sermesant Maxime, Biophysics-based statistical learning: Application to heart and brain interactions, Medical Image Analysis, 72, 2021. Crossref

  56. Gusseva Maria, Greer Joshua S., Castellanos Daniel A., Hussein Mohamed Abdelghafar, Greil Gerald, Veeram Reddy Surendranath R., Hussain Tarique, Chapelle Dominique, Chabiniok Radomír, Model-Assisted Time-Synchronization of Cardiac MR Image and Catheter Pressure Data, in Functional Imaging and Modeling of the Heart, 12738, 2021. Crossref

  57. Waugh Rebecca, Hussein Mohamed Abdelghafar, Weller Jamie, Sharma Kavita, Greil Gerald, Kahn Jeffrey, Hussain Tarique, Chabiniok Radomír, Cardiac Modeling for Multisystem Inflammatory Syndrome in Children (MIS-C, PIMS-TS), in Functional Imaging and Modeling of the Heart, 12738, 2021. Crossref

  58. Berberoğlu Ezgi, Stoeck Christian T., Moireau Philippe, Kozerke Sebastian, Genet Martin, Tang Dalin, In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI, PLOS ONE, 16, 11, 2021. Crossref

  59. Kimmig François, Moireau Philippe, Chapelle Dominique, Hierarchical modeling of length-dependent force generation in cardiac muscles and associated thermodynamically-consistent numerical schemes, Computational Mechanics, 68, 4, 2021. Crossref

  60. Regazzoni Francesco, Dedè Luca, Quarteroni Alfio, Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction, Vietnam Journal of Mathematics, 49, 1, 2021. Crossref

  61. Mollero Roch, Pennec Xavier, Delingette Hervé, Ayache Nicholas, Sermesant Maxime, A Multiscale Cardiac Model for Fast Personalisation and Exploitation, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, 9902, 2016. Crossref

  62. Yoneda Kazunori, Okada Jun-ichi, Watanabe Masahiro, Sugiura Seiryo, Hisada Toshiaki, Washio Takumi, A Multiple Step Active Stiffness Integration Scheme to Couple a Stochastic Cross-Bridge Model and Continuum Mechanics for Uses in Both Basic Research and Clinical Applications of Heart Simulation, Frontiers in Physiology, 12, 2021. Crossref

  63. Manganotti Jessica, Caforio Federica, Kimmig François, Moireau Philippe, Imperiale Sebastien, Coupling reduced-order blood flow and cardiac models through energy-consistent strategies: modeling and discretization, Advanced Modeling and Simulation in Engineering Sciences, 8, 1, 2021. Crossref

  64. Desrues Gaëtan, Feuerstein Delphine, Legay Thierry, Cazeau Serge, Sermesant Maxime, Personal-by-Design: A 3D Electromechanical Model of the Heart Tailored for Personalisation, in Functional Imaging and Modeling of the Heart, 12738, 2021. Crossref

  65. Sermesant Maxime, Delingette Hervé, Cochet Hubert, Jaïs Pierre, Ayache Nicholas, Applications of artificial intelligence in cardiovascular imaging, Nature Reviews Cardiology, 18, 8, 2021. Crossref

  66. Wang V.Y., Nielsen P.M.F., Nash M.P., Image-Based Predictive Modeling of Heart Mechanics, Annual Review of Biomedical Engineering, 17, 1, 2015. Crossref

  67. Imperiale Alexandre, Chapelle Dominique, Moireau Philippe, Sequential data assimilation for mechanical systems with complex image data: application to tagged-MRI in cardiac mechanics, Advanced Modeling and Simulation in Engineering Sciences, 8, 1, 2021. Crossref

  68. Chabiniok Radomír, Škardová Kateřina, Galabov Radek, Eichler Pavel, Gusseva Maria, Janoušek Jan, Fučík Radek, Tintěra Jaroslav, Oberhuber Tomáš, Hussain Tarique, Translational Cardiovascular Modeling: Tetralogy of Fallot and Modeling of Diseases, in Modeling Biomaterials, 2021. Crossref

  69. Spyrou L.A., Brisard S., Danas K., Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization, Journal of the Mechanical Behavior of Biomedical Materials, 92, 2019. Crossref

  70. Miller Renee, Marlevi David, Zhang Will, Hirschvogel Marc, Hadjicharalambous Myrianthi, Capilnasiu Adela, Balmus Maximilian, Hager Sandra, Jilberto Javiera, Bonini Mia, Wittgenstein Anna, Ahmed Yunus, Nordsletten David, Modeling Biomechanics in the Healthy and Diseased Heart, in Modeling Biomaterials, 2021. Crossref

  71. Gusseva Maria, Hussain Tarique, Friesen Camille Hancock, Moireau Philippe, Tandon Animesh, Patte Cécile, Genet Martin, Hasbani Keren, Greil Gerald, Chapelle Dominique, Chabiniok Radomír, Biomechanical Modeling to Inform Pulmonary Valve Replacement in Tetralogy of Fallot Patients After Complete Repair, Canadian Journal of Cardiology, 37, 11, 2021. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain