图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.2019030797
pages 447-468

DEVELOPING A VIRTUAL DAMAGE SENSOR USING A COUPLED ELECTRO-MECHANICAL FE MODEL OF A PIEZOELECTRIC MATERIAL

Somnath Ghosh
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218
Shu Guo
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218

ABSTRACT

This article develops a finite element model coupling transient electric and dynamic mechanical fields for a piezoelectric material. The mechanical field incorporates finite deformation kinematics with continuum damage relations to account for change in mechanical and piezoelectric material properties with deformation-induced damage evolution. The main interest in the coupled mechanical-piezoelectric model with damage is to serve as a electric field-based virtual damage sensor. The coupled mechanical-piezoelectric (ME-PE) code is validated by comparing with analytical results and those from commercial software. An electric field-based damage indicator function is proposed and calibrated from data obtained through numerical solutions using the ME-PE code. The function relates the electric field difference for undamaged and damaged conditions to the damage parameter, its rate and mechanical and piezoelectric material properties. The virtual damage sensor is used to examine damage conditions in a stretchable piezoelectric serpentine conductor.

REFERENCES

  1. ABAQUS, Dassault Systems: Simulia, 2014.

  2. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Smith, B.F., and Zhang, H., PETSc Users Manual, Argonne National Laboratory, Lemont, IL, Tech. Rep. ANL-95/11, Revision 3.4, 2013.

  3. Bustamante, R., Dorfmann, A., and Ogden, R., On Electric Body Forces and Maxwell Stresses inNonlinearly Electroelastic Solids, Int. J. Eng. Sci., vol. 47,nos. 11-12,pp. 1131-1141,2009.

  4. Cain, M.G., Stewart, M., and Gee, M., Degradation of Piezoelectric Materials, National Physical Laboratory Management Ltd., Teddington, Middlesex, U.K., Tech. Rep. NPL Rep. SMMT (A) 148, 1999.

  5. Chandrashekhara, K. and Agarwal, A., Active Vibration Control of Laminated Composite Plates Using Piezoelectric Devices: A Finite Element Approach, J. Intelligent Mater. Syst. Struct., vol. 4, no. 4, pp. 496-508, 1993.

  6. Clayton, J.D., Nonlinear Mechanics of Crystals, Vol. 177, Springer Science & Business Media, 2010.

  7. Crawley, E. and Luis, J.D., Use of Piezoelectric Actuators as Elements of Intelligent Structures, AIAA J., vol. 25, no. 10, pp. 1373-1385, 1987.

  8. Erturk, A. and Inman, D.J., An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations, Smart Mater Struct., vol. 18, no. 2, p. 025009, 2009.

  9. Guo, S. and Ghosh, S., A Finite Element Model for Coupled 3D Transient Electromagnetic and Structural Dynamics Problems, Comp. Mech, vol. 54, no. 2, pp. 407-424, 2014.

  10. Junior, C.D.M., Erturk, A., and Inman, D.J., An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates, J. Sound Vib, vol. 327, nos. 1-2, pp. 9-25, 2009.

  11. Karypis, G., Schloegel, K., and Kumar, V., Parmetis Parallel Graph Partitioning and Sparse Matrix Ordering Library Version 3.1, 2003.

  12. Lax, M. and Nelson, D.F., Maxwell Equations in Material Form, Phys. Rev. B, vol. 13, pp. 1777-1784, 1976.

  13. Lee, C., Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators. Part I: Governing Equations and Reciprocal Relationships, J. Acoust. Soc. Amer., vol. 87, no. 3, pp. 1144-1158,1990.

  14. Liu, L., An Energy Formulation of Continuum Magneto-Electro-Elasticity with Applications, J. Mech. Phys. Solids, vol. 63, pp. 451-480,2014.

  15. Lu, N. and Yang, S., Mechanics for Stretchable Sensors, Curr. Opin. Solid State Mater. Sci., vol. 19, no. 3, pp. 149-159,2015.

  16. McMeeking, R.M. and Landis, C.M., Electrostatic Forces and Stored Energy for Deformable Dielectric Materials, J. Appl. Mech, vol. 72, no. 4, p. 581,2005.

  17. Miehe, C., Discontinuous and Continuous Damage Evolution in Ogden-Type Large-Strain Elastic Materials, Eur. J. Mech. A. Solids, vol. 14, no. 5, pp. 697-720,1995.

  18. Miehe, C., Rosato, D., and Kiefer, B., Variational Principles in Dissipative Electro-Magneto-Mechanics: A Framework for the Macro-Modeling of Functional Materials, Int. J. Numer. Meth. Eng., vol. 86, no. 10, pp. 1225-1276, 2011.

  19. Mota, A. and Zimmerman, J.A., A Variational Finite-Deformation Constitutive Model for Piezoelectric Materials, Int. J. Numer. Meth. Eng., vol. 85, no. 6, pp. 752-767, 2011.

  20. Nowacki, W., Foundations of Linear Piezoelectricity, in Electromagnetic Interactions in Elastic Solids, H. Parkus, Ed., vol. 257, Vienna, Austria: Springer Verlag, pp. 105-157, 1979.

  21. Okayasu, M., Odagiri, N., and Mizuno, M., Damage Characteristics of Lead Zirconate Titanate Piezoelectric Ceramic during Cyclic Loading, Int. J. Fatigue, vol. 31, no. 8, pp. 1434-1441, 2009.

  22. Pao, Y.H., Electromagnetic Forces in Deformable Continua, Mech. Today, vol. 4,no. 7,pp. 1118-1126,1978.

  23. Rogers, J.A., Someya, T., and Huang, Y., Materials and Mechanics for Stretchable Electronics, Science, vol. 327, no. 5973, pp. 1603-1607, 2010.

  24. Shan, S., Kang, S.H., Zhao, Z., Fang, L., and Bertoldi, K., Design of Planar Isotropic Negative Poisson's Ratio Structures, Extreme Mech. Lett., vol. 4, pp. 96-102, 2015.

  25. Simo, J.C., On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects, Comp. Meth. Appl. Mech. Eng., vol. 60, no. 2, pp. 153-173, 1987.

  26. Smits, J.G., Dalke, S.I., and Cooney, T.K., The Constituent Equations of Piezoelectric Bimorphs, Sensors Actuators A Phys., vol. 28, no. 1, pp. 41-61,1991.

  27. Suo, Z., Kuo, C.M., Barnett, D., and Willis, J., Fracture Mechanics for Piezoelectric Ceramics, J. Mech. Phys. Solids, vol. 40, no. 4, pp. 739-765,1992.

  28. Suo, Z., Zhao, X., and Greene, W.H., A Nonlinear Field Theory of Deformable Dielectrics, J. Mech. Phys. Solids, vol. 56, no. 2, pp. 467-486, 2008.

  29. Tan, X.G. and Vu-Quoc, L., Optimal Solid Shell Element for Large Deformable Composite Structures with Piezoelectric Layers and Active Vibration Control, Int. J. Numer. Methods Eng., vol. 64, no. 15, pp. 1981-2013, 2005.

  30. Thomas, J. and Triantafyllidis, N., On Electromagnetic Forming Processes in Finitely Strained Solids: Theory and Examples, J. Mech. Phys. Solids, vol. 57, no. 8, pp. 1391-1416, 2009.

  31. Trimarco, C., Material Electromagnetic Fields and Material Forces, Arch. Appl. Mech., vol. 77, pp. 177-184, 2007.

  32. Trimarco, C., On the Dynamics of Electromagnetic Bodies, Int. J. Adv. Eng. Sci. Appl. Math, vol. 1, pp. 157-162, 2009.

  33. Yaghmaie, R. and Ghosh, S., Computational Modeling of Finite Deformation Piezoelectric Material Behavior Coupling Transient Electrical and Mechanical Fields, Comp. Phys, vol. 373, pp. 148-170, 2018.

  34. Yaghmaie, R., Guo, S., and Ghosh, S., Wavelet Transformation Induced Multi-Time Scaling (WATMUS) Model for Coupled Transient Electro-Magnetic and Structural Dynamics Finite Element Analysis, Comp. Meth. Appl. Mech. Eng., vol. 303, pp. 341-373,2016.

  35. Yang, X.H., Chen, C.Y., and Hu, Y.T., A Static Damage Constitutive Model for Piezoelectric Materials, in Mechanics of Electro-magnetic Solids, J.S. Yang and G.A. Maugin, Eds., Boston, MA: Springer, pp. 259-272, 2003.

  36. Yi, S., Ling, S.F., and Ying, M., Large Deformation Finite Element Analyses of Composite Structures Integrated with Piezoelectric Sensors and Actuators, Fin. Elem. Anal. Design, vol. 35, no. 1, pp. 1-15,2000.

  37. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C., and Rose, J.L., Active Health Monitoring of an Aircraft Wing with Embedded Piezoelectric Sensor/Actuator Network: I. Defect Detection, Localization and Growth Monitoring, Smart Mater. Struct., vol. 16, no. 4, p. 1208, 2007.


Articles with similar content:

IDENTIFYING MATERIAL PARAMETERS FOR A MICRO-POLAR PLASTICITY MODEL VIA X-RAY MICRO-COMPUTED TOMOGRAPHIC (CT) IMAGES: LESSONS LEARNED FROM THE CURVE-FITTING EXERCISES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Ghonwa Khaddour, SeonHong Na, Simon Salager, Kun Wang, WaiChing Sun
BUCKLING OF FGM TIMOSHENKO MICROBEAMS UNDER IN-PLANE THERMAL LOADING BASED ON THE MODIFIED STRAIN GRADIENT THEORY
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
M. Faghih Shojaei, S. Sahmani, R. Ansari, V. Mohammadi, Raheb Gholami
NONLINEAR BEHAVIOR OF MASONRY WALLS: FE, DE, AND FE/DE MODELS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Daniele Baraldi, Emilio Meroi, Antonella Cecchi, Emanuele Reccia, Claudia Brito de Carvalho Bello
Progressive Interface Failure under Shear Stresses Based on a Two-Dimensional Model of Decohesion
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Francesca Campi, Ilaria Monetto
MOLECULAR DYNAMICS SIMULATIONS OF THE LOCAL STRUCTURES AND TRANSPORT COEFFICIENTS OF ALKALI CARBONATES
Second Thermal and Fluids Engineering Conference, Vol.15, 2017, issue
Jianfeng Lu, Xiaolan Wei, Weilong Wang, Gechuanqi Pan, Jiang Li, Jing Ding