图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v2.i4.70
24 pages

Multiscale Model for Damage Analysis in Fiber-Reinforced Composites with Interfacial Debonding

Somnath Ghosh
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218
Prasanna Raghavan
Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210

ABSTRACT

This paper presents an adaptive multilevel computational model for the multiscale analysis of composite structures with damage due to fiber/matrix interfacial debonding. The method combines continuum damage modeling with displacement based FEM with a microstructurally explicit modeling of interfacial debonding by the Voronoi cell FEM (VCFEM). Three computational levels of hierarchy with different resolutions are introduced to reduce modeling and discretization errors due to an inappropriate resolution. They are (a) level-0 of a pure macroscopic analysis, for which a continuum damage mechanics (CDM) model is developed from homogenization of micromechanical variables that evolve with interfacial debonding; (b) level-1 of a coupled macroscopic-microscopic modeling to implement adequate criteria for switching from macroscopic analyses to pure microscopic analyses; and (c) level-2 regions of a pure microscopic modeling with explicit interfacial debonding. The CDM model for a level-0 analysis is constructed from rigorous VCFEM-based micromechanical analysis of the representative volume element (RVE) followed by homogenization. A numerical example of a composite laminate with localized loading is solved to demonstrate the limitations of CDM models and to demonstrate the effectiveness of the multiscale approach in predicting failure due to interfacial debonding.


Articles with similar content:

MULTIFIELD CONTINUUM SIMULATIONS FOR DAMAGED MATERIALS: A BAR WITH VOIDS
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Valerio Varano, Patrizia Trovalusci
HYBRID COMPUTING MODELS FOR LARGE-SCALE HETEROGENEOUS 3D MICROSTRUCTURES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
Carsten Konke, Kai Schrader
Effects of Shape and Size of Crystal Grains on the Strengths of Polycrystalline Metals
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Kenjiro Terada, Masayoshi Akiyama, Ikumu Watanabe
COMPARISON OF MULTIRESOLUTION CONTINUUM THEORY AND NONLOCAL DAMAGE MODEL FOR USE IN SIMULATION OF MANUFACTURING PROCESSES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Hao Qin, Lars-Erik Lindgren, Olufunminiyi Abiri
Multilevel Parallel Programming for Multiscale Modeling of Composite Materials
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 3
Somnath Ghosh, Paul M. Eder, James E. Giuliani