图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.2015011435
pages 281-295

MULTISCALE IDENTIFICATION OF THE RANDOM ELASTICITY FIELD AT MESOSCALE OF A HETEROGENEOUS MICROSTRUCTURE USING MULTISCALE EXPERIMENTAL OBSERVATIONS

M. T. Nguyen
Universite Paris-Est, Laboratoire Modelisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallee, Cedex 2, France
Christophe Desceliers
Universite Paris-Est, Laboratoire Modelisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallee, Cedex 2, France
Christian Soize
Université Paris-Est Marne-La-Vallée Cité Descartes 5, bd Descartes, Champs sur Marne, 77454 Marne La Vallee Cedex 2, France
J. M. Allain
Ecole Polytechnique, Laboratoire de Mecanique des Solides, 91128, Palaiseau cedex, France
H. Gharbi
Ecole Polytechnique, Laboratoire de Mecanique des Solides, 91128, Palaiseau cedex, France

ABSTRACT

This paper deals with a multiscale statistical inverse method for performing the experimental identification of the elastic properties of materials at macroscale and at mesoscale within the framework of a heterogeneous microstructure which is modeled by random elastic media. New methods are required for carrying out such multiscale identification using experimental measurements of the displacement fields carried out at macroscale and at mesoscale with only a single specimen submitted to a given external load at macroscale. In this paper, for a heterogeneous microstructure, a new identification method is presented and formulated within the framework of the three-dimensional linear elasticity. It permits the identification of the effective elasticity tensor at macroscale, and the identification of the tensor-valued random field, which models the apparent elasticity field at mesoscale. A validation is presented first with simulated experiments using a numerical model based on the hypothesis of 2D-plane stresses. Then, we present the results given by the proposed identification procedure for experimental measurements obtained by digital image correlation (DIC) on cortical bone.


Articles with similar content:

VALIDATION OF A PROBABILISTIC MODEL FOR MESOSCALE ELASTICITY TENSOR OF RANDOM POLYCRYSTALS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 1
Arash Noshadravan, Roger Ghanem, Pedro Peralta, Johann Guilleminot, Ikshwaku Atodaria
COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Julien Yvonnet, Qi-Chang He, Eric Monteiro
Subject-Specific p-FE Analysis of the Proximal Femur Utilizing Micromechanics-Based Material Properties
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Zohar Yosibash, Nir Trabelsi, Christian Hellmich
Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Jiun-Shyan Chen, Nasr M. Ghoniem, Xinwei Zhang, Shafigh Mehraeen
CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Somnath Ghosh, Subhendu Chakraborty, Jiaxi Zhang