图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.2014007103
pages 33-43

BOUNDARY ELEMENT METHOD MODELLING OF NANOCOMPOSITES

Jacek Ptaszny
Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Grzegorz Dziatkiewicz
Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Piotr Fedelinski
Institute of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland

ABSTRACT

The paper deals with the numerical homogenization of polymer/clay nanocomposites reinforced by stacks of parallel clay sheets. The stacks can be modelled as effective particles, as it was shown in the literature. For a relatively small volume fraction of the reinforcement, the effective particles can be isotropic, while for greater values, the particles should be anisotropic. Other authors most commonly use analytical methods or the finite element method (FEM). In this work, the boundary element method (BEM) is applied. Two-dimensional plain strain models are analyzed. Two cases are considered, namely, isotropic and anisotropic (orthotropic) particles. The matrix of the composite is modelled as isotropic. The problem is solved by using a BEM formulation for plates containing many identical inclusions. The kernels of boundary integrals for the isotropic subdomains are the Kelvin solutions for plane elasticity. In the case of the orthotropic particles, fundamental solutions obtained by the Stroh formalism are applied. The results are compared to the Mori-Tanaka model. Acceptable agreement between the models is observed.

REFERENCES

  1. Beer, G., Smith, I., and Duenser, C., The Boundary Element Method with Programming for Engineers and Scientists.

  2. Brebbia, C. A. and Dominguez, J., Boundary Elements, An Introductory Course.

  3. Fedeliński, P., Ed., Advanced Computer Modelling in Micromechanics.

  4. Figiel, Ł. and Buckley, C. P., Elastic constants for an intercalated layered–silicate/polymer nanocomposite using the effective particle concept—A parametric study using numerical and analytical continuum approaches. DOI: 10.1016/j.commatsci.2008.09.005

  5. Hbaieb, K., Wang, Q. X., Chia, Y. H. J., and Cotterell, B., Modelling stiffness of polymer/clay nanocomposites. DOI: 10.1016/j.polymer.2006.11.062

  6. Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, F. P. T., An approach to micro–macro modeling of heterogeneous materials. DOI: 10.1007/s004660000212

  7. Mura, T., Micromechanics of Defects in Solids.

  8. Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials.

  9. Pan, E., A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. DOI: 10.1016/S0955-7997(98)00062-9

  10. Ptaszny, J. and Fedeliński, P., Numerical homogenization of polymer/clay nanocomposites by the boundary element method.

  11. Sfantos, G. K. and Aliabadi, M. H., A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials. DOI: 10.1002/nme.1831

  12. Sheng, N., Boyce, M. C., Parks, D. M., Rutledge, G. C., Abes, J. I., and Cohen, R. E., Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. DOI: 10.1016/j.polymer.2003.10.100

  13. Ting, T. C. T., Anisotropic Elasticity, Theory, and Applications.

  14. Wang, J. and Pyrz, R., Prediction of the overall moduli of layered silicate-reinforced nanocomposites, Part I. Basic theory and formulas. DOI: 10.1016/S0266-3538(03)00024-1

  15. Wang, J. and Pyrz, R., Prediction of the overall moduli of layered silicate-reinforced nanocomposites, Part II. Analyses. DOI: 10.1016/S0266-3538(03)00025-3

  16. Wang, Y. M. and Ting, T. C. T., The Stroh formalism for anisotropic materials that possess an almost extraordinary degenerate matrix N. DOI: 10.1016/S0020-7683(96)00024-8

  17. Yao, Z., Kong, F., and Zheng, X., Simulation of 2D elastic bodies with randomly distributed circular inclusions using the BEM.

  18. Zohdi, T. I. and Wriggers, P., An Introduction to Computational Micromechanics.


Articles with similar content:

RANDOM RESIDUAL STRESSES IN ELASTICITY HOMOGENEOUS MEDIUM WITH INCLUSIONS OF NONCANONICAL SHAPE
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 3
Valeriy A. Buryachenko, Michele Brun
ELASTOPLASTIC DEFORMATION OF DISPERSE COMPOSITES WITH A RAREFIED RANDOM STRUCTURE
Composites: Mechanics, Computations, Applications: An International Journal, Vol.2, 2011, issue 2
A. A. Tashkinov, N. V. Mikhailova
Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings
GENERAL INTEGRAL EQUATIONS OF STOKES FLOW THROUGH THE RANDOM STRUCTURE POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 5
Valeriy A. Buryachenko
Green's Function and Eshelby's Fields in Couple-Stress Elasticity
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Quanshui Zheng, Z.-H. Zhao