图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

VIRTUAL ELEMENT FORMULATION FOR PHASE-FIELD MODELING OF DUCTILE FRACTURE

卷 17, 册 2, 2019, pp. 181-200
DOI: 10.1615/IntJMultCompEng.2018026804
Get accessDownload

摘要

An efficient low-order virtual element method (VEM) for the phase-field modeling of ductile fracture is outlined within this work. The recently developed VEM is a competitive discretization scheme for meshes with highly irregular shaped elements. The phase-field approach is a very powerful technique to simulate complex crack phenomena in multi-physical environments. The formulation in this contribution is based on a minimization of a pseudo-potential density functional for the coupled problem undergoing large strains. The main aspect of development is the extension toward the virtual element formulation due to its flexibility in dealing with complex shapes and arbitrary number of nodes. Two numerical examples illustrate the efficiency, accuracy, and convergence properties of the proposed method.

参考文献
  1. Aldakheel, F., Mechanics of Nonlocal Dissipative Solids: Gradient Plasticity and Phase Field Modeling of Ductile Fracture, PhD, Institute ofApplied Mechanics (CE), Chair I, University of Stuttgart, 2016. DOI: 10.18419/opus-8803.

  2. Aldakheel, F., Micromorphic Approach for Gradient-Extended Thermo-Elastic-Plastic Solids in the Logarithmic Strain Space, Continuum Mech. Thermodynam., vol. 29, no. 6, pp. 1207-1217, 2017.

  3. Aldakheel, F., Hudobivnik, B., and Wriggers, P., Virtual Elements for Finite Thermo-Plasticity Problems, Comput. Mech, 2019. DOI: 10.1007/s00466-019-01714-2.

  4. Aldakheel, F., Hudobivnik, B., Hussein, A., and Wriggers, P., Phase-Field Modeling of Brittle Fracture Using an Efficient Virtual Element Scheme, Comput. Methods Appl. Mech. Eng., vol. 341, pp. 443-466, 2018a.

  5. Aldakheel, F., Kienle, D., Keip, M.A., and Miehe, C., Phase Field Modeling of Ductile Fracture in Soil Mechanics, Proc. Appl. Math. Mech, vol. 17, no. 1, pp. 383-384, 2017.

  6. Aldakheel, F., Mauthe, S., and Miehe, C., Towards Phase Field Modeling of Ductile Fracture in Gradient-Extended Elastic-Plastic Solids, Proc. Appl. Math. Mech, vol. 14, pp. 411-412, 2014.

  7. Aldakheel, F. and Miehe, C., Coupled Thermomechanical Response of Gradient Plasticity, Int. J. Plasticity, vol. 91, pp. 1-24, 2017.

  8. Aldakheel, F., Wriggers, P., and Miehe, C., A Modified Gurson-Type Plasticity Model at Finite Strains: Formulation, Numerical Analysis and Phase-Field Coupling, Comput. Mech, vol. 62, no. 4, pp. 815-833,2018b.

  9. Alessi, R., Ambati, M., Gerasimov, T., Vidoli, S., and De Lorenzis, L., Comparison of Phase-Field Models of Fracture Coupled with Plasticity, in Advances in Computational Plasticity, Springer International Publishing, pp. 1-21, 2018a.

  10. Alessi, R., Vidoli, S., and De Lorenzis, L., A Phenomenological Approach to Fatigue with a Variational Phase-Field Model: The One-Dimensional Case, Eng. Fracture Mech., vol. 190, no. 1, pp. 53-73, 2018b.

  11. Ambati, M., Gerasimov, T., and De Lorenzis, L., Phase-Field Modeling of Ductile Fracture, Comput. Mech., vol. 55, pp. 1017-1040,2015.

  12. Amor, H., Marigo, J., and Maurini, C., Regularized Formulation of the Variational Brittle Fracture with Unilateral Contact: Numerical Experiments, J. Mech. Phys. Solids, vol. 57, pp. 1209-1229, 2009.

  13. Artioli, E., Beirao da Veiga, L., Lovadina, C., and Sacco, E., Arbitrary Order 2D Virtual Elements for Polygonal Meshes: Part I, Elastic Problem, Comput. Mech., vol. 60, no. 3, pp. 355-377, 2017.

  14. Bathe, K.J., Finite Element Procedures, Englewood Cliffs, NJ: Prentice-Hall, 1996.

  15. Beirao Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., and Russo, A., Basic Principles of Virtual Element Methods, Math. Models Methods Appl. Sci., vol. 23, no. 1, pp. 199-214, 2013a.

  16. Beirao Da Veiga, L., Brezzi, F., and Marini, L.D., Virtual Elements for Linear Elasticity Problems, SIAMJ. Numer. Anal., vol. 51, no. 2, pp. 794-812, 2013b.

  17. Bellis, M.L.D., Wriggers, P., Hudobivnik, B., and Zavarise, G., Virtual Element Formulation for Isotropic Damage, Finite Elements Anal. Des., vol. 144, pp. 38-48,2018.

  18. Belytschko, T. and Bindeman, L.P., Assumed Strain Stabilization of the 4-Node Quadrilateral with 1-Point Quadrature for Nonlinear Problems, Comput. Methods Appl. Mech. Eng., vol. 88, no. 3, pp. 311-340,1991.

  19. Bleyer, J. and Alessi, R., Phase-Field Modeling of Anisotropic Brittle Fracture Including Several Damage Mechanisms, Comput. Methods Appl. Mech. Eng., vol. 336, no. 1, pp. 213-236,2018.

  20. Boerner, E., Loehnert, S., and Wriggers, P., A New Finite Element based on the Theory of a Cosserat Point-Extension to Initially Distorted Elements for 2D Plane Strain, Int. J. Numer. Methods Eng., vol. 71, pp. 454-472, 2007.

  21. Boger, L., Keip, M.A., and Miehe, C., Minimization and Saddle-Point Principles for the Phase-Field Modeling of Fracture in Hydrogels, Comput. Mater. Sci., vol. 138, pp. 474-485, 2017.

  22. Borden, M.J., Hughes, T. J., Landis, C.M., Anvari, A., and Lee, I.J., A Phase-Field Formulation for Fracture in Ductile Materials: Finite Deformation Balance Law Derivation, Plastic Degradation, and Stress Triaxiality Effects, Comput. Methods Appl. Mech. Eng., vol. 312, pp. 130-166, 2016.

  23. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., and Landis, C.M., A Phase-Field Description of Dynamic Brittle Fracture, Comput. Methods Appl. Mech. Eng., vols. 217-220, pp. 77-95, 2012.

  24. Brezzi, F., Buffa, A., and Lipnikov, K., Mimetic Finite Differences for Elliptic Problems, ESAIM: Math. Model. Numer. Anal., vol. 43, no. 2, pp. 277-295, 2009.

  25. Cangiani, A., Manzini, G., Russo, A., and Sukumar, N., Hourglass Stabilization and the Virtual Element Method, Int. J. Numer. Methods Eng., vol. 102, nos. 3-4, pp. 404-436, 2015.

  26. Chi, H., Beirao da Veiga, L., and Paulino, G., Some Basic Formulations of the Virtual Element Method (VEM) for Finite Deformations, Comput. Methods Appl. Mech. Eng., vol. 318, pp. 148-192, 2017.

  27. Choo, J. and Sun, W., Coupled Phase-Field and Plasticity Modeling of Geological Materials: From Brittle Fracture to Ductile Flow, Comput. Methods Appl. Mech. Eng., vol. 330, pp. 1-32, 2018.

  28. Dittmann, M., Aldakheel, F., Schulte, J., Wriggers, P., and Hesch, C., Variational Phase-Field Formulation of Non-Linear Ductile Fracture, Comput. Methods Appl. Mech. Eng., vol. 342, pp. 71-94, 2018.

  29. Dittmann, M., Hesch, C., Schulte, J., Aldakheel, F., and Franke, M., Multi-Field Modelling and Simulation of Large Deformation Ductile Fracture, Proc. of the XIV International Conference on Computational Plasticity. Fundamentals and Applications, Barcelona, Spain, pp. 556-567, 2017.

  30. Dittmann, M., Kriiger, M., Schmidt, F., SchuB, S., and Hesch, C., Variational Modeling of Thermomechanical Fracture and Anisotropic Frictional Mortar Contact Problems with Adhesion, Comput. Mech, vol. 63, no. 3, pp. 571-591, 2019.

  31. Duda, F.P., Ciarbonetti, A., Sanchez, P. J., and Huespe, A.E., A Phase-Field/Gradient Damage Model for Brittle Fracture in Elastic-Plastic Solids, Int. J. Plasticity, vol. 65, pp. 269-296,2014.

  32. Ehlers, W. and Luo, C., A Phase-Field Approach Embedded in the Theory of Porous Media for the Description of Dynamic Hydraulic Fracturing, Comput. Methods Appl. Mech. Eng., vol. 315, pp. 348-368,2017.

  33. Flanagan, D. and Belytschko, T., A Uniform Strain Hexahedron and Quadrilateral with Orthogonal Hour-Glass Control, Int. J. Numer. Methods Eng, vol. 17, pp. 679-706, 1981.

  34. Gain, A.L., Talischi, C., and Paulino, G.H., On the Virtual Element Method for Three-Dimensional Linear Elasticity Problems on Arbitrary Polyhedral Meshes, Comput. Methods Appl. Mech. Eng., vol. 282, pp. 132-160, 2014.

  35. Gultekin, O., Dal, H., and Holzapfel, G.A., A Phase-Field Approach to Model Fracture of Arterial Walls: Theory and Finite Element Analysis, Comput. Methods Appl. Mech. Eng, vol. 312, pp. 542-566,2016.

  36. Hackl, K., Generalized Standard Media and Variational Principles in Classical and Finite Strain Elastoplasticity, J. Mech. Phys. Solids, vol. 45, no. 5, pp. 667-688,1997.

  37. Hallquist, J.O., Nike 2D: An Implicit, Finite Deformation, Finite Element Code for Analyzing the Static and Dynamic Response of Two-Dimensional Solids, Lawrence Livermore National Laboratory, University of California, Livermore, CA, Rep. UCRL- 52678, 1984.

  38. Heider, Y. and Markert, B., A Phase-Field Modeling Approach of Hydraulic Fracture in Saturated Porous Media, Mech. Res. Commun., vol. 80, pp. 38-46, 2017.

  39. Hesch, C., Franke, M., Dittmann, M., and Temizer, I., Hierarchical NURBS and a Higher-Order Phase-Field Approach to Fracture for Finite-Deformation Contact Problems, Comput. Methods Appl. Mech. Eng., vol. 301, pp. 242-258, 2016.

  40. Hesch, C. and Weinberg, K., Thermodynamically Consistent Algorithms for a Finite-Deformation Phase-Field Approach to Fracture, Int. J. Numer. Methods Eng., vol. 99, pp. 906-924,2014.

  41. Hudobivnik, B., Aldakheel, F., and Wriggers, P., A Low Order 3D Virtual Element Formulation for Finite Elasto-Plastic Deformations, Comput. Mech., vol. 63, no. 2, pp. 253-269, 2019.

  42. Korelc, J., Solinc, U., and Wriggers, P., An Improved EAS Brick Element for Finite Deformation, Comput. Mech, vol. 46, pp. 641-659,2010.

  43. Korelc, J. and Stupkiewicz, S., Closed-Form Matrix Exponential and Its Application in Finite-Strain Plasticity, Int. J. Numer. Methods Eng., vol. 98, pp. 960-987, 2014.

  44. Korelc, J. and Wriggers, P., Automation of Finite Element Methods, Switzerland: Springer, 2016.

  45. Krysl, P., Mean-Strain Eight-Node Hexahedron with Optimized Energy-Sampling Stabilization for Large-Strain Deformation, Int. J. Numer. Methods Eng., vol. 103, pp. 650-670, 2015a.

  46. Krysl, P., Mean-Strain Eight-Node Hexahedron with Stabilization by Energy Sampling Stabilization, Int. J. Numer. Methods Eng., vol. 103, pp. 437-449, 2015b.

  47. Kuhn, C., Schluter, A., and Muller, R., On Degradation Functions in Phase Field Fracture Models, Comput. Mater. Sci., vol. 108, pp. 374-384,2015.

  48. Miehe, C., Aldakheel, F., and Raina, A., Phase Field Modeling of Ductile Fracture at Finite Strains. A Variational Gradient-Extended Plasticity-Damage Theory, Int. J. Plasticity, vol. 84, pp. 1-32, 2016a.

  49. Miehe, C., Aldakheel, F., and Teichtmeister, S., Phase-Field Modeling of Ductile Fracture at Finite Strains: A Robust Variational- Based Numerical Implementation of a Gradient-Extended Theory by Micromorphic Regularization, Int. J. Numer. Methods Eng., vol. 111, no. 9, pp. 816-863, 2017.

  50. Miehe, C., Hofacker, M., Schanzel, L.M., and Aldakheel, F., Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Brittle-to-Ductile Failure Mode Transition and Crack Propagation in Thermo-Elastic-Plastic Solids, Comput. Methods Appl. Mech. Eng., vol. 294, pp. 486-522,2015a.

  51. Miehe, C., Kienle, D., Aldakheel, F., and Teichtmeister, S., Phase Field Modeling of Fracture in Porous Plasticity: A Variational Gradient-Extended Eulerian Framework for the Macroscopic Analysis of Ductile Failure, Comput. Methods Appl. Mech. Eng., vol. 312, pp. 3-50, 2016b.

  52. Miehe, C., Schanzel, L., and Ulmer, H., Phase Field Modeling of Fracture in Multi-Physics Problems. Part I. Balance of Crack Surface and Failure Criteria for Brittle Crack Propagation in Thermo-Elastic Solids, Comput. Methods Appl. Mech. Eng., vol. 294, pp. 449-485, 2015b.

  53. Miehe, C., Teichtmeister, S., and Aldakheel, F., Phase-Field Modeling of Ductile Fracture: A Variational Gradient-Extended Plasticity-Damage Theory and Its Micromorphic Regularization, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci, vol. 374, no. 2066,2016c.

  54. Miehe, C., Welschinger, F., and Aldakheel, F., Variational Gradient Plasticity at Finite Strains. Part II: Local-Global Updates and Mixed Finite Elements for Additive Plasticity in the Logarithmic Strain Space, Comput. Methods Appl. Mech. Eng., vol. 268, pp. 704-734, 2014.

  55. Miehe, C., Welschinger, F., and Hofacker, M., Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations, Int. J. Numer. Methods Eng., vol. 83, pp. 1273-1311,2010.

  56. Mueller-Hoeppe, D.S., Loehnert, S., and Wriggers, P., A Finite Deformation Brick Element with Inhomogeneous Mode Enhancement, Int. J. Numer. Methods Eng., vol. 78, pp. 1164-1187,2009.

  57. Nadler, B. and Rubin, M., A New 3D Finite Element for Nonlinear Elasticity Using the Theory of a Cosserat Point, Int. J. Solids Struct., vol. 40, pp. 4585-4614,2003.

  58. Reese, S., Kuessner, M., and Reddy, B.D., A New Stabilization Technique to Avoid Hourglassing in Finite Elasticity, Int. J. Numer. Methods Eng., vol. 44, pp. 1617-1652, 1999.

  59. Reese, S. and Wriggers, P., A New Stabilization Concept for Finite Elements in Large Deformation Problems, Int. J. Numer. Methods Eng., vol. 48, pp. 79-110, 2000.

  60. Reinoso, J., Paggi, M., and Linder, C., Phase Field Modeling of Brittle Fracture for Enhanced Assumed Strain Shells at Large Deformations: Formulation and Finite Element Implementation, Comput. Mech., vol. 59, no. 6, pp. 981-1001,2017.

  61. Simo, J.C., A Framework for Finite Strain Elastoplasticity based on Maximum Plastic Dissipation and the Multiplicative Decom-position. Part II: Computational Aspects, Comput. Methods Appl. Mech. Eng., vol. 68, pp. 1-31,1988.

  62. Simo, J.C. and Miehe, C., Associative Coupled Thermoplasticity at Finite Strains: Formulation, Numerical Analysis and Implementation, Comput. Methods Appl. Mech. Eng., vol. 98, pp. 41-104,1992.

  63. Taylor, R.L. and Artioli, E., VEM for Inelastic Solids, Adv. Comput. Plasticity. Comput. Methods Appl. Sci., vol. 46, pp. 381-394, 2018.

  64. Teichtmeister, S., Kienle, D., Aldakheel, F., and Keip, M.A., Phase Field Modeling of Fracture in Anisotropic Brittle Solids, Int. J. Non-Linear Mech, vol. 97, pp. 1-21, 2017.

  65. Verhoosel, C.V. and de Borst, R., A Phase-Field Model for Cohesive Fracture, Int. J. Numer. Methods Eng., vol. 96, pp. 43-62, 2013.

  66. Wriggers, P., Nonlinear Finite Elements, Berlin: Springer, 2008.

  67. Wriggers, P. and Hudobivnik, B., A Low Order Virtual Element Formulation for Finite Elasto-Plastic Deformations, Comput. Methods Appl. Mech. Eng., vol. 327, pp. 459-477,2017.

  68. Wriggers, P., Hudobivnik, B., and Korelc, J., Efficient Low Order Virtual Elements for Anisotropic Materials at Finite Strains, Cham, Switzerland: Springer International Publishing, pp. 417-434, 2018a.

  69. Wriggers, P., Hudobivnik, B., and Schroder, J., Finite and Virtual Element Formulations for Large Strain Anisotropic Material with Inextensive Fibers, Cham, Switzerland: Springer International Publishing, pp. 205-231, 2018b.

  70. Wriggers, P., Reddy, B.D., Rust, W., and Hudobivnik, B., Efficient Virtual Element Formulations for Compressible and Incompressible Finite Deformations, Comput. Mech, vol. 60, no. 2, pp. 253-268, 2017.

  71. Wriggers, P., Rust, W.T., and Reddy, B.D., A Virtual Element Method for Contact, Comput. Mech., vol. 58, no. 6, pp. 1039-1050, 2016.

  72. Zhang, X., Vignes, C., Sloan, S.W., and Sheng, D., Numerical Evaluation of the Phase-Field Model for Brittle Fracture with Emphasis on the Length Scale, Comput. Mech, vol. 59, no. 5, pp. 737-752, 2017.

  73. Zienkiewicz, O.C., Taylor, R., and Zhu, J.Z., The Finite Element Method: Its Basis and Fundamentals, Amsterdam: Elsevier, 2005.

对本文的引用
  1. Noii Nima, Aldakheel Fadi, Wick Thomas, Wriggers Peter, An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture, Computer Methods in Applied Mechanics and Engineering, 361, 2020. Crossref

  2. Klochkov Yuriy V., Ishchanov Tlek R., Andreev Alexander S., Klochkov Mikhail Yu., The Finite Element Desired Quantities Invariant Approximation Method in the Thin Shells Calculation Based on the Timoshenko Hypothesis, Materials Science Forum, 974, 2019. Crossref

  3. Hudobivnik Blaž, Aldakheel Fadi, Wriggers Peter, A low order 3D virtual element formulation for finite elasto–plastic deformations, Computational Mechanics, 63, 2, 2019. Crossref

  4. Dittmann M., Aldakheel F., Schulte J., Schmidt F., Krüger M., Wriggers P., Hesch C., Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Computer Methods in Applied Mechanics and Engineering, 361, 2020. Crossref

  5. Aldakheel Fadi, Hudobivnik Blaž, Wriggers Peter, Virtual elements for finite thermo-plasticity problems, Computational Mechanics, 64, 5, 2019. Crossref

  6. Hussein Ali, Aldakheel Fadi, Hudobivnik Blaž, Wriggers Peter, Guidault Pierre-Alain, Allix Olivier, A computational framework for brittle crack-propagation based on efficient virtual element method, Finite Elements in Analysis and Design, 159, 2019. Crossref

  7. Aldakheel Fadi, A microscale model for concrete failure in poro-elasto-plastic media, Theoretical and Applied Fracture Mechanics, 107, 2020. Crossref

  8. van Huyssteen Daniel, Reddy B.D., A virtual element method for isotropic hyperelasticity, Computer Methods in Applied Mechanics and Engineering, 367, 2020. Crossref

  9. Böhm Christoph, Kruse Jens, Stonis Malte, Aldakheel Fadi, Wriggers Peter, Virtual Element Method for Cross-Wedge Rolling during Tailored Forming Processes, Procedia Manufacturing, 47, 2020. Crossref

  10. Sreekumar Abhilash, Triantafyllou Savvas P., Bécot François-Xavier, Chevillotte Fabien, Multiscale VEM for the Biot consolidation analysis of complex and highly heterogeneous domains, Computer Methods in Applied Mechanics and Engineering, 375, 2021. Crossref

  11. Barfusz Oliver, Brepols Tim, van der Velden Tim, Frischkorn Jan, Reese Stefanie, A single Gauss point continuum finite element formulation for gradient-extended damage at large deformations, Computer Methods in Applied Mechanics and Engineering, 373, 2021. Crossref

  12. Yang Sha, Aldakheel Fadi, Caggiano Antonio, Wriggers Peter, Koenders Eddie, A Review on Cementitious Self-Healing and the Potential of Phase-Field Methods for Modeling Crack-Closing and Fracture Recovery, Materials, 13, 22, 2020. Crossref

  13. Noii Nima, Khodadadian Amirreza, Ulloa Jacinto, Aldakheel Fadi, Wick Thomas, François Stijn, Wriggers Peter, Bayesian inversion for unified ductile phase-field fracture, Computational Mechanics, 68, 4, 2021. Crossref

  14. Eldahshan Hazem, Bouchard Pierre-Olivier, Alves José, Perchat Etienne, Munoz Daniel Pino, Phase field modeling of ductile fracture at large plastic strains using adaptive isotropic remeshing, Computational Mechanics, 67, 3, 2021. Crossref

  15. Dzhabrailov A. Sh., Nikolaev A. P., Klochkov Yu. V., Gureeva N. A., Ishchanov T. R., Calculation of an Elliptic Cylindrical Shell Outside Elastic Limits Based on the FEM with Various Forms of Defining Equations, Journal of Machinery Manufacture and Reliability, 49, 6, 2020. Crossref

  16. Böhm Christoph, Hudobivnik Blaž, Aldakheel Fadi, Wriggers Peter, Modeling of Single‐Slip Finite Strain Crystal Plasticity via the Virtual Element Method, PAMM, 20, 1, 2021. Crossref

  17. Beirão da Veiga L., Canuto C., Nochetto R. H., Vacca G., Equilibrium analysis of an immersed rigid leaflet by the virtual element method, Mathematical Models and Methods in Applied Sciences, 31, 07, 2021. Crossref

  18. Cihan Mertcan, Aldakheel Fadi, Hudobivnik Blaž, Wriggers Peter, 3D Virtual Elements for Elastodynamic Problems, PAMM, 20, 1, 2021. Crossref

  19. Raghu P., Rajagopal A., Jalan S. K., Reddy J. N., Modeling of brittle fracture in thick plates subjected to transient dynamic loads using a hybrid phase field model, Meccanica, 56, 6, 2021. Crossref

  20. Eldahshan Hazem, Alves José, Bouchard Pierre-Olivier, Perchat Etienne, Munoz Daniel Pino, CIPFAR: A 3D unified numerical framework for the modeling of ductile fracture based on the phase field model and adaptive remeshing, Computer Methods in Applied Mechanics and Engineering, 387, 2021. Crossref

  21. van Huyssteen Daniel, Reddy B.D., The incorporation of mesh quality in the stabilization of virtual element methods for nonlinear elasticity, Computer Methods in Applied Mechanics and Engineering, 392, 2022. Crossref

  22. Wriggers Peter, Hudobivnik Blaž, Aldakheel Fadi, NURBS-based geometries: A mapping approach for virtual serendipity elements, Computer Methods in Applied Mechanics and Engineering, 378, 2021. Crossref

  23. Aldakheel Fadi, Hudobivnik Blaž, Artioli Edoardo, Beirão da Veiga Lourenço, Wriggers Peter, Curvilinear virtual elements for contact mechanics, Computer Methods in Applied Mechanics and Engineering, 372, 2020. Crossref

  24. Sreekumar Abhilash, Triantafyllou Savvas P., Chevillotte Fabien, Virtual elements for sound propagation in complex poroelastic media, Computational Mechanics, 69, 1, 2022. Crossref

  25. Aldakheel Fadi, Schreiber Chistoph, Müller Ralf, Wriggers Peter, Phase-Field Modeling of Fatigue Crack Propagation in Brittle Materials, in Current Trends and Open Problems in Computational Mechanics, 2022. Crossref

  26. Marfia Sonia, Monaldo Elisabetta, Sacco Elio, Cohesive fracture evolution within virtual element method, Engineering Fracture Mechanics, 269, 2022. Crossref

  27. Hudobivnik Blaž, Aldakheel Fadi, Wriggers Peter, Adaptive Virtual Element Method for Large-Strain Phase-Field Fracture, in Current Trends and Open Problems in Computational Mechanics, 2022. Crossref

  28. Salinas-Fernández Sergio, Hitschfeld-Kahler Nancy, Ortiz-Bernardin Alejandro, Si Hang, POLYLLA: polygonal meshing algorithm based on terminal-edge regions, Engineering with Computers, 2022. Crossref

  29. Reddy B. Daya, van Huyssteen Daniel, Alternative Approaches to the Stabilization of Virtual Element Formulations for Hyperelasticity, in Current Trends and Open Problems in Computational Mechanics, 2022. Crossref

  30. Diehl Patrick, Lipton Robert, Wick Thomas, Tyagi Mayank, A comparative review of peridynamics and phase-field models for engineering fracture mechanics, Computational Mechanics, 69, 6, 2022. Crossref

  31. Wessels Henning, Böhm Christoph, Aldakheel Fadi, Hüpgen Markus, Haist Michael, Lohaus Ludger, Wriggers Peter, Computational Homogenization Using Convolutional Neural Networks, in Current Trends and Open Problems in Computational Mechanics, 2022. Crossref

  32. Marulli M.R., Valverde-González A., Quintanas-Corominas A., Paggi M., Reinoso J., A combined phase-field and cohesive zone model approach for crack propagation in layered structures made of nonlinear rubber-like materials, Computer Methods in Applied Mechanics and Engineering, 395, 2022. Crossref

  33. Du Xiaoxiao, Wang Wei, Zhao Gang, Yang Jiaming, Guo Mayi, Zhang Ran, Virtual element method with adaptive refinement for problems of two-dimensional complex topology models from an engineering perspective, Computational Mechanics, 70, 3, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain