图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际多尺度计算工程期刊
影响因子: 1.016 5年影响因子: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 打印: 1543-1649
ISSN 在线: 1940-4352

国际多尺度计算工程期刊

DOI: 10.1615/IntJMultCompEng.v6.i2.40
pages 153-167

Evaluation of Effective Thermal Conductivities of Porous Textile Composites

Blanka Tomkova
Department of Textile Materials, Technical University in Liberec, 46117 Liberec 1, Czech Republic
Michal Sejnoha
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic
Jan Novak
Centre for Integrated Design of Advances Structures, Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague 6, Czech Republic
Jan Zeman
Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thakurova 7,166 29 Prague 6, Czech Republic; Centre of Excellence IT4Innovations, VSB-TU Ostrava, 17 listopadu 15/2172 708 33 Ostrava-Poruba, Czech Republic

ABSTRACT

An uncoupled multiscale homogenization approach is used to estimate the effective thermal conductivities of plain weave C/C composites with a high degree of porosity. The geometrical complexity of the material system on individual scales is taken into account through the construction of a suitable representative volume element (RVE), a periodic unit cell, exploiting the information provided by the image analysis of a real composite system on every scale. Two different solution procedures are examined. The first one draws on the classical first-order homogenization technique assuming steady state conditions and periodic distribution of the fluctuation part of the temperature field. The second approach is concerned with the solution of a transient flow problem. Although more complex, the latter approach allows for a detailed simulation of heat transfer in the porous system. Effective thermal conductivities of the laminate derived from both approaches through a consistent homogenization on individual scales are then compared with those obtained experimentally. A reasonably close agreement between individual results then promotes the use of the proposed multiscale computational approach combined with the image analysis of real material systems.


Articles with similar content:

ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
David L. McDowell, Darby Luscher, Curt Bronkhorst
MULTISCALE FINITE ELEMENT METHOD FOR A HIGHLY EFFICIENT COUPLING ANALYSIS OF HETEROGENEOUS MAGNETO-ELECTRO-ELASTIC MEDIA
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 1
Wenzhong Qu, Ping Fu, Xihua Chu, Hui Liu
MICROMORPHIC TWO-SCALE MODELLING OF PERIODIC GRID STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 2
Hans-Georg Sehlhorst, Alexander Duster, Ralf Janicke, Stefan Diebels
Extended Multiscale Finite Element Method for Mechanical Analysis of Periodic Lattice Truss Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 6
Hongwu Zhang, J. K. Wu, Zhendong Fu
VISUALIZATION EXPERIMENT AS A BASIS FOR ECOLOGIZATION OF METALLURGICAL PLANTS
Journal of Flow Visualization and Image Processing, Vol.6, 1999, issue 3
Josef Adamec, Jiri Nozicka