图书馆订阅: Guest
高温材料处理:国际期刊

每年出版 4 

ISSN 打印: 1093-3611

ISSN 在线: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

MEASUREMENT OF THE MAGNETIC FIELD DISTRIBUTION IN A MAGNETICALLY INSULATED DIODE WITH EXTERNAL MAGNETIC FIELD

卷 22, 册 1, 2018, pp. 35-45
DOI: 10.1615/HighTempMatProc.2018026934
Get accessGet access

摘要

The current density of intense pulsed ion beam can be adjusted by modulating the magnetic field of a magnetically insulated diode, and this makes the magnetic field distribution vital to the performance of the diode. In this work, the magnetic field of a magnetically insulated diode was measured by a magnetic probe composed of one pair of perpendicular induction coils. As revealed by the measurement, the minimum magnetic induction intensity is reached near the outer cathode, while the value increases monotonically with approach to the inner cathode. The nonuniform emission of anode was discussed with account for this distribution. It is also demonstrated that the magnetic field distribution can be affected by the additional magnetic field induced by the eddy current in the anode. The method to improve the efficiency of the diode and optimization of accelerator performance was discussed reasonably.

对本文的引用
  1. Stepanov A.V., Zhong Haowen, Zhang Shijian, Xu Mofei, Le Xiaoyun, Remnev G.E., Improvement of a powerful ion Br - Diode parameters by changing the distribution of the magnetic flux in the anode – cathode gap, Vacuum, 176, 2020. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain