图书馆订阅: Guest
流动显示和图像处理期刊

每年出版 4 

ISSN 打印: 1065-3090

ISSN 在线: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

NUMERICAL INVESTIGATION OF GASEOUS MICROCHANNEL FLOW IN TRANSITION REGIMES

卷 12, 册 1, 2005, pp. 73-94
DOI: 10.1615/JFlowVisImageProc.v12.i1.60
Get accessGet access

摘要

Pressure-driven low subsonic gaseous flows in a microchannel are studied numerically by the Direct Simulation Monte Carlo (DSMC) method. The Variable Hard Sphere (VHS) molecular model and Larsen—Borgnakke procedures are adopted. The Knudsen number (Kn) is adjusted by varying inlet/outlet pressure for a range of transition regimes. Cases of different channel aspect ratios and wall temperatures with the fixed inlet/outlet pressure or constant average pressure-gradient boundary conditions are investigated. The results indicate that both the channel length and heat transfer affect the rarefaction of the flow. The downstream variations in flow properties are strongly dependent on Kn, aspect ratio, and heat transfer, and generally are in qualitative agreement with the Fanno/Rayleigh theory.

对本文的引用
  1. Goldstein R.J., Ibele W.E., Patankar S.V., Simon T.W., Kuehn T.H., Strykowski P.J., Tamma K.K., Heberlein J.V.R., Davidson J.H., Bischof J., Kulacki F.A., Kortshagen U., Garrick S., Srinivasan V., Ghosh K., Mittal R., Heat transfer—A review of 2005 literature, International Journal of Heat and Mass Transfer, 53, 21-22, 2010. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain