图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 3.259 5年影响因子: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.2016018590
pages 341-359

TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION

Alfredo Garbuno-Inigo
Institute for Risk and Uncertainty, School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, United Kingdom
F. A. DiazDelaO
Institute for Risk and Uncertainty, School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, United Kingdom
Konstantin M. Zuev
Department of Computing and Mathematical Sciences, Division of Engineering and Applied Science, 1200 E California Blvd., California Institute of Technology, Pasadena, California 91125, USA

ABSTRACT

Surrogate models have become ubiquitous in science and engineering for their capability of emulating expensive computer codes, necessary to model and investigate complex phenomena. Bayesian emulators based on Gaussian processes adequately quantify the uncertainty that results from the cost of the original simulator, and thus the inability to evaluate it on the whole input space. However, it is common in the literature that only a partial Bayesian analysis is carried out, whereby the underlying hyper-parameters are estimated via gradient-free optimization or genetic algorithms, to name a few methods. On the other hand, maximum a posteriori (MAP) estimation could discard important regions of the hyper-parameter space. In this paper, we carry out a more complete Bayesian inference, that combines Slice Sampling with some recently developed sequential Monte Carlo samplers. The resulting algorithm improves the mixing in the sampling through the delayed-rejection nature of Slice Sampling, the inclusion of an annealing scheme akin to Asymptotically Independent Markov Sampling and parallelization via transitional Markov chain Monte Carlo. Examples related to the estimation of Gaussian process hyper-parameters are presented. For the purpose of reproducibility, further development, and use in other applications, the code to generate the examples in this paper is freely available for download at http://github.com/agarbuno/ta2s2_codes.


Articles with similar content:

STATISTICAL SURROGATE MODELS FOR PREDICTION OF HIGH-CONSEQUENCE CLIMATE CHANGE
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Richard V. Field Jr., Paul Constantine, M. Boslough
BAYESIAN INFERENCE FOR INVERSE PROBLEMS OCCURRING IN UNCERTAINTY ANALYSIS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Gilles Celeux, Nicolas Bousquet, Mathieu Couplet, Shuai Fu
MODEL STRUCTURAL INFERENCE USING LOCAL DYNAMIC OPERATORS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 1
Nathan M. Urban, Terry Haut, Anthony M. DeGennaro, Balasubramanya T. Nadiga
Complexity of Bayesian Procedure of Inductive Inference. Discrete Case
Journal of Automation and Information Sciences, Vol.38, 2006, issue 11
Boris A. Beletskiy, Alexandra A. Vagis, Nikita A. Gupal, Sergey V. Vasilyev
RE-ENGINEERING OF AN AUTOMATED WAREHOUSE SYSTEM USING OBJECT-ORIENTED SIMULATION
Flexible Automation and Intelligent Manufacturing, 1997:
Proceedings of the Seventh International FAIM Conference, Vol.0, 1997, issue
Agostino G. Bruzzone, Roberto Mosca