图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 4.911 5年影响因子: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i1.40
pages 49-76

ASSIMILATION OF COARSE-SCALEDATAUSINGTHE ENSEMBLE KALMAN FILTER

Santha Akella
The Johns Hopkins University, Baltimore, MD 21218, USA
A. Datta-Gupta
Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA
Yalchin Efendiev
Department of Mathematics and Institute for Scientific Computation (ISC), Texas A&M University, College Station, TX 77840, USA; Multiscale Model Reduction Laboratory, North-Eastern Federal University, Yakutsk, Russia, 677980

ABSTRACT

Reservoir data is usually scale dependent and exhibits multiscale features. In this paper we use the ensemble Kalman filter (EnKF) to integrate data at different spatial scales for estimating reservoir fine-scale characteristics. Relationships between the various scales is modeled via upscaling techniques. We propose two versions of the EnKF to assimilate the multiscale data, (i) where all the data are assimilated together and (ii) the data are assimilated sequentially in batches. Ensemble members obtained after assimilating one set of data are used as a prior to assimilate the next set of data. Both of these versions are easily implementable with any other upscaling which links the fine to the coarse scales. The numerical results with different methods are presented in a twin experiment setup using a two-dimensional, two-phase (oil and water) flow model. Results are shown with coarse-scale permeability and coarse-scale saturation data. They indicate that additional data provides better fine-scale estimates and fractional flow predictions. We observed that the two versions of the EnKF differed in their estimates when coarse-scale permeability is provided, whereas their results are similar when coarse-scale saturation is used. This behavior is thought to be due to the nonlinearity of the upscaling operator in the case of the former data. We also tested our procedures with various precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the coarse-scale data yielded improved estimates. With better coarse-scale modeling and inversion techniques as more data at multiple coarse scales is made available, the proposed modification to the EnKF could be relevant in future studies.


Articles with similar content:

GRID-BASED INVERSION OF PRESSURE TRANSIENT TEST DATA WITH STOCHASTIC GRADIENT TECHNIQUES
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Fikri Kuchuk, Richard Booth, Kirsty Morton, Mustafa Onur
Study of Various Estimates of the Macroscopic Tangent Operator in the Incremental Homogenization of Elastoplastic Composites
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Olivier Pierard, Issam Doghri
DROP SIZE SCALING ANALYSIS OF NON-NEWTONIAN FLUIDS
Atomization and Sprays, Vol.4, 1994, issue 4
Alan J. Bilanin, Milton E. Teske
MULTIDIMENSIONAL CLASSIFICATION OF ACTIVE-PASSIVE REMOTELY SENSED DATA FOR MONITORING OF HAZARD PHENOMENA OCCURRING ON DRAINED SOILS
Telecommunications and Radio Engineering, Vol.74, 2015, issue 2
S. Ye. Yatsevich, D. M. Bychkov, V. N. Tsymbal, V. K. Ivanov
NUMERICAL SIMULATION OF FREE FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES IN POROUS MEDIA
Journal of Porous Media, Vol.15, 2012, issue 3
Sohrab Zendehboudi, Maurice B. Dusseault, Ioannis Chatzis, Ali Shafiei