图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际不确定性的量化期刊
影响因子: 3.259 5年影响因子: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN 打印: 2152-5080
ISSN 在线: 2152-5099

Open Access

国际不确定性的量化期刊

DOI: 10.1615/Int.J.UncertaintyQuantification.2014008153
pages 151-170

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY-INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 1: BAYESIAN INFERENCE OF FIXED MODEL FORMS

Maher Salloum
Sandia National Laboratories, 7011 East Avenue, MS 9158, Livermore, California 94550, USA
Jeremy A. Templeton
Sandia National Laboratories, 7011 East Avenue, MS 9409, Livermore, California 94550, USA

ABSTRACT

Uncertainty quantification techniques have the potential to play an important role in constructing constitutive relationships applicable to nanoscale physics. At these small scales, deviations from laws appropriate at the macroscale arise due to insufficient scale separation between the atomic and continuum length scales, as well as fluctuations due to thermal processes. In this work, we consider the problem of inferring the coefficients of an assumed constitutive model form using atomistic information and propagation of the associated uncertainty. A nanoscale heat transfer problem is taken as the model, and we use a polynomial chaos expansion to represent the thermal conductivity with a linear temperature dependence. A Bayesian inference method is developed to extract the coefficients in this expansion from molecular dynamics (MD) samples at prescribed temperatures. Importantly, the atomistic data are incompatible with the continuum model because of the finite probability of heat flowing in the opposite direction of the temperature gradient; we present a method to account for this in the model. The fidelity and uncertainty in these techniques are then examined. Validation is provided by comparing a continuum Fourier model against a larger all MD simulation representing the true solution.


Articles with similar content:

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 2: GENERALIZED CONTINUUM MODELS BASED ON GAUSSIAN PROCESSES
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Jeremy A. Templeton, Maher Salloum
FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 6
Ajay Jasra, Yan Zhou, Kody J. H. Law
MODELING HETEROGENEITY IN NETWORKS USING POLYNOMIAL CHAOS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Ioannis G. Kevrekidis, Carlo R. Laing, Constantinos I. Siettos, Karthikeyan Rajendran, Andreas C. Tsoumanis
ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 2
Sankaran Mahadevan, Bin Liang
RESOLUTION OF INVERSE HEAT CONDUCTION PROBLEM WITH REDUCED MODELS
International Heat Transfer Conference 11, Vol.19, 1998, issue
Daniel Petit, Etienne Videcoq, Hamou Sadat