图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
强化传热期刊
影响因子: 0.562 5年影响因子: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN 打印: 1065-5131
ISSN 在线: 1026-5511

强化传热期刊

DOI: 10.1615/JEnhHeatTransf.2019031575
pages 1-70

A REVIEW ON HEAT TRANSFER ENHANCEMENT WITH NANOFLUIDS

Zhixiong Guo
Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

ABSTRACT

Advances in technology miniaturization with increasing power density call for new technologies for enhancing heat transfer. Enhancement of heat transfer with the use of nanofluids has been a hectic topic of research and development since the term "nanofluid" was first used in 1995, mainly because the thermophysical properties of nanofluids in most reports in the literature showed supremacy or improvement over their base fluids, which may not allow fulfillment of the present cutting-edge technology needs. Significant progress in this field has been made in the past two decades. This review summarizes a variety of the experimentally measured thermal properties of common nanofluids, the enhancement mechanisms discovered or hypothesised, the models used for properties and heat transfer characteristics, and the applications of nanofluids for enhancing heat transfer. The model of an artificial neutral network is particularly emphasized. Applications to cooling technology, renewable energy and energy systems, and building technology are detailed. Challenges and areas for future research are identified.

REFERENCES

  1. Abbood, S.A., Wang, J., Wu, Z., and Sunden, B., Analysis of Natural Convection of Cu and TiO2 Nanofluids inside Nonconventional Enclosures, J. Enhanced Heat Transf., vol. 25, pp. 315-332,2018.

  2. Abdollahi, A., Darvanjooghi, M.H.K., Karimipour, A., and Safaei, M.R., Experimental Study to Obtain the Viscosity of CuO-Loaded Nanofluid: Effects of Nanoparticles' Mass Fraction, Temperature and Base-fluid's Types to Develop a Correlation, Meccanica, vol. 53, no. 15, pp. 3739-3757,2018.

  3. Ahmadi, M.H., Ramezanizadeh, M., Nazari, M.A., Lorenzini, G., Kumar, R., and Jilte, R., Applications of Nanofluids in Geothermal: A Review, Math. Modell. Eng. Prob., vol. 5, pp. 281-285,2018.

  4. Ahmed, S.A., Ozkaymak, M., Sozen, A., Menlik, T. and Fahed, A., Improving Car Radiator Performance by Using TiO2-Water Nanofluid, Eng. Sci. Technol., vol. 21, no. 5, pp. 996-1005,2018.

  5. Akash, A.R., Pattamatta, A., and Das, S.K., Experimental Study of the Thermohydraulic Performance of Water/Ethylene Glycol-Based Graphite Nanocoolant in Vehicle Radiators, J. Enhanced Heat Transf., vol. 26, pp. 345-363,2019.

  6. Akbar, N.S., Raza, M., and Ellahi, R., Anti-Bacterial Application for New Thermal Conductivity Model in Arteries with CNT Suspended Nanofluid, J. Mech. Med. Biol, vol. 16, no. 5, p. 1650063,2016.

  7. Akbarzadeh, S. and Valipour, M.S., Heat Transfer Enhancement in Parabolic Trough Collectors: A Comprehensive Review, Renew. Sustain. Energy Rev., vol. 92, pp. 198-218,2018.

  8. Akilu, S., Baheta, A.T., Said, M.A.M., Minea, A.A., and Sharma, K.V., Properties of Glycerol and Ethylene Glycol Mixture based SiO2-CuO/C Hybrid Nanofluid for Enhanced Solar Energy Transport, Sol. Energy Mater. Sol. Cells, vol. 179, pp. 118-128,2018.

  9. Alawi, O.A., Mallah, A.R., Kazi, S.N., Sidik, N.A.C., and Najafi, G., Thermophysical Properties and Stability of Carbon Nanostructures and Metallic Oxides Nanofluids, J. Therm.. Anal. Calorim., vol. 135, no. 2, pp. 1545-1562,2019.

  10. Alva, G., Lin, Y., and Fang, G., An Overview of Thermal Energy Storage Systems, Energy, vol. 144, pp. 341-378,2018.

  11. Amin, M., Putra, N., Kosasih, E.A., Prawiro, E., Luanto, R.A., and Mahlia, T.M.I., Thermal Properties of Beeswax/Graphene Phase Change Material as Energy Storage for Building Applications, Appl. Therm. Eng., vol. 112, pp. 273-280,2017.

  12. Arikan, E., Abbasoglu, S., and Gazi, M., Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids, Sustainability, vol. 10, p. 1794,2018.

  13. Arulprakasajothi, M., Elangovan, K., Chandrasekhar, U., and Suresh, S., Experimental Study of a Water-Based Titanium Oxide Nanofluid in a Circular Pipe with Transition Flow and Conical Strip Inserts, Heat Transf. Res, vol. 49, pp. 439-456,2018.

  14. Azizi, Z., Alamdari, A., and Malayeri, M.R., Thermal Performance and Friction Factor of a Cylindrical Microchannel Heat Sink Cooled by Cu-Water Nanofluid, Appl. Therm.. Eng., vol. 99, pp. 970-978,2016.

  15. Azizian, R., Doroodchi, E., and Moghtaderi, B., Influence of Controlled Aggregation on Thermal Conductivity of Nanofluids, J. Heat Transf., vol. 138, p. 021301,2016.

  16. Azmi, W.H., Sharma, K.V., Mamat, R., Najafi, G., and Mohamad, M.S., The Enhancement of Effective Thermal Conductivity and Effective Dynamic Viscosity of Nanofluids-A Review, Renew. Sustain. Energy Rev, vol. 53, pp. 1046-1058,2016.

  17. Azmi, W.H., Sharma, K.V., Sarma, P.K., Mamat, R., Anuar, S., and Rao, V.D., Experimental Determination of Turbulent Forced Convection Heat Transfer and Friction Factor with SiO2 Nanofluid, Exp. Fluid Sci., vol. 51, pp. 103-111,2013.

  18. Babu, S.A. and Raja, M., An Experimental Investigation on the Effect of ZnO/Water Nanofluid on the Efficiency of Flat-Plate Solar Collector, Adv. Nat. Appl. Sci, vol. 7, pp. 40-48,2016.

  19. Balaji, D., Velraj, R., and Murthy, M.R., A Review of the Role of Passive Techniques on Heat Transfer Enhancement of Horizontal Tube Falling Film and Flooded Evaporators, J. Enhanced Heat Transf., vol. 25, pp. 239-282,2018.

  20. Bandarra Filho, E.P., Mendoza, O.S.H., Beicker, C.L.L., Menezes, A., and Wen, D., Experimental Investigation of a Silver Nanoparticle-Based Direct Absorption Solar Thermal System, Energy Convers. Manage, vol. 84, pp. 261-267,2014.

  21. Bang, I.C. and Chang, S.H., Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids from a Plain Surface in a Pool, Int. J. Heat Mass Transf., vol. 48, pp. 2407-2419,2005.

  22. Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., Dalkilica, A.S., and Wongwises, S., Viscosity of Nanofluids: A Review of Recent Experimental Studies, Int. Commun. Heat Mass Transf., vol. 73, pp. 114-123,2016.

  23. Batchelor, G.K., The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles, J. FluidMech, vol. 83, no. 1, pp. 97-117,1977.

  24. Bellerova, H., Tseng, A.A., Pohanka, M., and Raudensky, M., Spray Cooling by Solid Jet Nozzles Using Alumina/Water Nanofluids, Int. J. Therm.. Sci., vol. 62, pp. 127-137,2012.

  25. Bellos, E., Tzivanidis, C., and Tsimpoukis, D., Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators, Renew. Sustain. Energy Rev., vol. 91, pp. 358-375,2018.

  26. Bergles, A.E. and Manglik, R.M., Current Progress and New Development in Enhanced Heat and Mass Transfer, J. Enhanced Heat Transf., vol. 20, pp. 1-15,2013.

  27. Bergles, A.E., ExHFT for Fourth Generation Heat Transfer Technology, Exp. Thermal Fluid Sci., vol. 26, pp. 335-344, 2002.

  28. Bergles, A.E., Jensen, M.K., Somerscales, E.F.C., and Manglik, R.M., Literature Review of Heat Transfer Enhancement Technology for Heat Exchangers in Gas-Fired Applications, Gas Research Institute, Chicago, IL, Tech. Rep. ACRC TR-105,1991.

  29. Bergles, A.E., Nirmalan, V., Junkhan, G.H., and Webb, R.L., Bibliography on Augmentation of Convective Heat and Mass Transfer-II, Iowa State University, Ames, IA, Tech. Rep. ISU-ERI-AMES-84221,1983.

  30. Bergles, A.E., Recent Developments in Enhanced Heat Transfer, Heat Mass Transf., vol. 47, pp. 1001-1008,2011.

  31. Bergles, A.E., Techniques to Enhance Heat Transfer, Handbook of Heat Transfer, W.M. Rohsenow, J.P. Hartnett, and Y.I. Cho, Eds., New York, NY: McGraw-Hill, pp. 11.1-11.76,1998.

  32. Bhuiyan, M.H.U., Saidur, R., Amalina, M.A., and Mostafizur, R.M., Measurement of Latent Heat of Vapor-ization of Nanofluids Using Calorimetric Technique, J. Therm. Anal. Calorim., vol. 122, pp. 1341-1346, 2015.

  33. Bianco, V., Marchitto, A., Scarpa, F., and Tagliafico, L.A., Computational Fluid Dynamics Modeling of Developing Forced Laminar Convection Flow of Al2O3-Water Nanofluid in a Two-Dimensional Rectangular Section Channel, J. Enhanced Heat Transf., vol. 25, pp. 387-398,2018.

  34. Bobbo, S., Colla, L., Barizza, A., Rossi, S., Fedele, L., and Nazionale, C., Characterization of Nanofluids Formed by Fumed Al2O3 in Water for Geothermal Applications, Int. Compress Eng. Refrig. Air Cond. High Perform. Build. Conf., pp. 1-9,2016.

  35. Brinkman, H.C., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys, vol. 20, no. 4, p. 571,1952.

  36. Bruggeman, V.D., Berechnung Verscheidener Physikalischer Konstanten von Heterogenen Substanzen, Annal. Phys, vol. 416, no. 7, pp. 636-664,1935.

  37. Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transf., vol. 128, pp. 240-250,2006.

  38. Buongiorno, J., Hu, L.W., Apostolakis, G., Hannink, R., Lucas, T., and Chupin, A., A Feasibility Assessment of the Use of Nanofluids to Enhance the In-Vessel Retention Capability in Light-Water Reactors, Nucl. Eng. Des, vol. 239, no. 5, pp. 941-948,2009.

  39. Buongiorno, J., Hu, L.-W., Kim, S.J., Hannink, R., Truong, B., and Forrest, E., Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features Issues, and Research Gaps, Nucl. Technol, vol. 162, no. 1, pp. 80-91,2008.

  40. Cai, Y.M. and Guo, Z., Spectral Monte Carlo Simulation of Collimated Solar Irradiation Transfer in a Water-Filled Prismatic Louver, Appl. Opt., vol. 57, pp. 3021-3030,2018.

  41. Cai, Y.M. and Guo, Z., Spectral Investigation of Solar Energy Absorption and Light Transmittance in a Water-Filled Prismatic Glass Louver, Sol. Energy, vol. 179, pp. 164-173,2019.

  42. Cao, Y.D. and Faghri, A., A Review on Micro/Miniature Heat Pipes, J. Enhanced Heat Transf, vol. 24, pp. 473-482,2017.

  43. Chamra, L.M. and Webb, R.L., A Review on Condensation and Evaporation in Micro-Fin Tubes at Equal Saturation Temperatures, J. Enhanced Heat Transf., vol. 24, pp. 399-409,2017.

  44. Chang, T.B., Syu, S.C., and Yang, Y.K., Effects of Particle Volume Fraction on Spray Heat Transfer Performance of Al2O3-Water Nanofluids, Int. J. Heat Mass Transf., vol. 55, pp. 1014-1021,2012.

  45. Chang, M.H., Liu, H.S., and Tai, C.Y., Preparation of Copper Oxide Nanoparticles and Its Application in Nanofluid, Powder Technol, vol. 207, pp. 378-382,2011.

  46. Chen, H., Ding, Y., He, Y, and Tan., C., Rheological Behaviour of Ethylene Glycol based Titania Nanofluids, Chem. Phys. Lett., vol. 444, pp. 333-337,2007.

  47. Chen, L., Xie, H., Li, Y., and Yu, W., Nanofluids Containing Carbon Nanotubes Treated by Mechanochemical Reaction, Thermochim. Acta, vol. 477, nos. 1-2, pp. 21-24,2008.

  48. Cheng, L.X., Bandarra Filho, E.P., and Thome, J.R., Nanofluid Two-Phase Flow and Thermal Physics: A New Research Frontier of Nanotechnology and Its Challenges, J. Nanosci. Nanotech., vol. 8, pp. 3315-3332, 2008.

  49. Cheng, W.-L., Zhang, W.W., Chen, H., and Hu, L., Spray Cooling and Flash Evaporation Cooling: The Current Development and Application, Renew. Sustain. Energy Rev., vol. 55, pp. 614-628,2016.

  50. Chien, R. and Chuang, J., Experimental Microchannel Heat Sink Performance Studies Using Nanofluids, Int. J Therm. Sci., vol. 46, pp. 57-66,2007.

  51. Chitra, S.R., Sendhilnathan, S., and Suresh, S., Investigation of Heat Transfer Characteristics of Mgmnni/Diw-Based Nanofluids for Quenching in Industrial Applications, J. Enhanced Heat Transf., vol. 22, pp. 1-28,2015.

  52. Choi, S.U.S. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, International Mechanical Engineering Congress and Exhibition, San Francisco, USA, November 12-17,1995.

  53. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., and Grulke, E.A., Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., vol. 79, p. 2252,2001.

  54. Chon, C.H., Kihm, K.D., Lee, S.P., and Choi, S.U., Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement, Appl. Phys. Lett., vol. 87, p. 153107,2005.

  55. Chougule, S.S. and Sahu, S.K., Comparative Study on Heat Transfer Enhancement of Low Volume Concen-tration of Al2O3-Water and Carbon Nano-Tube-Water Nano-Fluids in Transition Regime Using Helical Screw Tape Inserts, Exp. Heat Transf., vol. 29, pp. 1-20,2016.

  56. Corcione, M., Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids, Energy Convers. Manage., vol. 52, no. 1, pp. 789-793,2011.

  57. Das, S.K., Choi, S.U.S., Yu, W., andPradeep, T., Nanofluids: Science and Technology,NJ: Wiley, Hoboken, 2007.

  58. Das, S.K., Putra, N., and Roetzel, W., Pool Boiling Characteristics of Nano-Fluids, Int. J. Heat Mass Transf, vol. 46, pp. 851-862,2003b.

  59. Das, S.K., Putra, N., Thiesen, P., and Roetzel, W., Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, J. Heat Transf., vol. 125, no. 4, pp. 567-574,2003a.

  60. Dehghani, M.S., Toghraie, D., and Mehmandoust, B., Mixed-Convection Nanofluid Flow through a Grooved Channel with Internal Heat Generating Solid Cylinders in the Presence of an Applied Magnetic Field, Heat Transf. Res., vol. 50, pp. 287-309,2019.

  61. Diaz, R. and Guo, Z., Enhanced Conduction and Pool Boiling Heat Transfer on Single-Layer Graphene-Coated Substrates, J. Enhanced Heat Transf., vol. 26, pp. 127-143,2019.

  62. Diglio, G., Roselli, C., Sasso, M., and Jawali, C.U., Borehole Heat Exchanger with Nanofluids as Heat Carrier, Geothermics, vol. 72, pp. 112-123,2018.

  63. Ding, Y., Alias, H., Wen, D., and Williams, R.A., Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids), Int. J. Heat Mass Transf, vol. 49, nos. 1-2, pp. 240-250,2006.

  64. Ding, Y. and Wen, D.S., Particle Migration in a Flow of Nanoparticle Suspensions, Powder Technol, vol. 149, pp. 84-92,2005.

  65. Ding, Y., Chen, H., Wang, L., Yang, C.Y., He, Y., Yang, W., Lee, W.P., Zhang, L., and Huo, R., Heat Transfer Intensification Using Nanofluids, KONA Powder Particle J., vol. 25, pp. 23-38,2007.

  66. Dong, F., Cao, T., Hou, L., and Ni, J., Optimization Study of Artificial Cavities on Subcooled Flow Boiling Performance of Water in a Horizontal Simulated Engine Cooling Passage, J. Enhanced Heat Transf., vol. 26, pp. 37-57,2019.

  67. Donghyun, S. and Debjyoti, B., Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications, Int. J. Heat Mass Transf., vol. 54, pp. 1064-1070,2011.

  68. Duangthongsuk, W. and Wongwises, S., An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing under a Turbulent Flow Regime, Int. J. Heat Mass Transf, vol. 53, pp. 334-344,2010.

  69. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., vol. 78, p. 718,2001.

  70. Einstein, A., A New Determination of Molecular Dimensions, Ann. Phys., vol. 324, no. 2, pp. 289-306, 1906.

  71. Elias, M.M., Mahbubul, I.M., Saidur, R., Sohel, M.R., Shahrul, I.M., Khaleduzzaman, S.S., and Sadeghipour, S., Experimental Investigation on the Thermo-Physical Properties of Al2O3 Nanoparticles Suspended in Car Radiator Coolant, Int. Commun. Heat Mass Transf., vol. 54, pp. 48-53,2014.

  72. Elmir, M., Mehdaoui, R., and Mojtabi, A., Numerical Simulation of Cooling a Solar Cell by Forced Convection in the Presence of a Nanofluid, Energy Procedia, vol. 18, pp. 594-603,2012.

  73. Esfe, M.H., Ahangar, M.R.H., Rejvani, M., Toghraie, D., and Hajmohammad, M.H., Designing an Artificial Neural Network to Predict Dynamic Viscosity of Aqueous Nanofluid of TiO2 Using Experimental Data, Int. Commun. Heat Mass Transf., vol. 75, pp. 192-196,2016.

  74. Esfe, M.H. and Saedodin, S., An Experimental Investigation and New Correlation of Viscosity of ZnO-EG Nanofluid at Various Temperatures and Different Solid Volume Fractions, Exp. Therm. Fluid Sci., vol. 55, pp. 1-5,2014.

  75. Esfe, M.H., Arani, A.A.A., and Esfandeh, S., Experimental Study on Rheological Behavior of Monograde Heavy-Duty Engine Oil Containing CNTs and Oxide Nanoparticles with Focus on Viscosity Analysis, J Mol. Liq., vol. 272, pp. 319-329,2018.

  76. Esfe, M.H., Karimipour, A., Yan, W.M., Akbari, M., Safaei, M.R., and Dahari, M., Experimental Study on Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Al2O3 Nanoparticles, Int. J. Heat Mass Transf., vol. 88, pp. 728-734,2015a.

  77. Esfe, M.H., Raki, H.R., Emami, M.R.S., and Afrand, M., Viscosity and Rheological Properties of Antifreeze based Nanofluid Containing Hybrid Nano-Powders of MWCNTs and TiO2 under Different Temperature Conditions, Powder Technol., vol. 342, pp. 808-816,2019.

  78. Esfe, M.H., Saedodin, S., Bahiraei, M., Toghraie, D,. Mahian, O., and Wongwises, S., Thermal Conductivity Modeling of MgO/EG Nanofluids Using Experimental Data and Artificial Neural Network, J. Therm. Anal. Calorim, vol. 118, pp. 287-294,2014.

  79. Esfe, M.H., Saedodin, S., Sina, N., Afrand, M., andRostami, S., Designing an Artificial Neural Network to Predict Thermal Conductivity and Dynamic Viscosity of Ferromagnetic Nanofluid, Int. Commun. Heat Mass Transf., vol. 68, pp. 50-57,2015b.

  80. Evans, W., Fish, J., and Keblinski, P., Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity, Appl. Phys. Lett., vol. 88, p. 093116,2006.

  81. Fard, A.M., Mirjalily, S.A.A., and Ahrar, A.J., Influence of Carbon Nanotubes on Pressure Drop and Heat Transfer Rate of Water in Helically Coiled Tubes, J. Enhanced Heat Transf., vol. 26, pp. 217-233,2018.

  82. Fedele, L., Colla, L., Bobbo, S., Barison, S., and Agresti, F., Experimental Stability Analysis of Different Water-Based Nanofluids, Nano. Res. Lett., vol. 6, p. 300,2011.

  83. Ganvir, R.B., Wale, P.V., and Kriplani, V.M., Heat Transfer Characteristics in Nanofluid-A Review, Renew. Sustain. Energy Rev., vol. 75, pp. 451-460,2017.

  84. Gardellini, A., Fasano, M., Bigdeli, M.B., Chiavazzo, E., and Asinari, P., Thermal Transport Phenomena in Nanoparticle Suspensions, J. Phys.: Cond. Matt., vol. 28, p. 483003,2016.

  85. Ghaderian, J. and Sidik, N.A.C., An Experimental Investigation on the Effect of Al2O3/Distilled Water Nanofluid on the Energy Efficiency of Evacuated Tube Solar Collector, Int. J. Heat Mass Transf., vol. 108, pp. 972-987,2017.

  86. Gnanadason, M.K., Kumar, P.S., Rajakumar, S., and Yousuf, M.H.S., Effect of Nanofluids in a Vacuum Single Basin Solar Still, Int. J. Sci. Eng. Res, vol. 3, pp. 303-309,2012.

  87. Godson, L., Deepak, K., Enoch, C., Jefferson, B., and Raja, B., Heat Transfer Characteristics of Silver/Water Nanofluids in a Shell and Tube Heat Exchanger, Arch. Civil Mech. Eng., vol. 14, no. 3, pp. 489-496,2014.

  88. Godson, L., Raja, B., Lal, D.M., and Wongwises, S., Enhancement of Heat Transfer Using Nanofluids-An Overview, Renew. Sustain. Energy Rev., vol. 14, pp. 629-641,2010.

  89. Graham, A.L., On the Viscosity of Suspensions of Solid Spheres, Appl. Sci. Res., vol. 37, nos. 3-4, pp. 275-286,1981.

  90. Guo, W.W., Li, G.N., Zheng, Y., and Dong, C., Measurement of the Thermal Conductivity of SiO2bv Nanofluids with an Optimized Transient Hot Wire Method, Thermochim. Acta, vol. 661, pp. 84-97, 2018.

  91. Guo, Z., Heat Transfer Enhancement-A Brief Review of 2018 Literature, J. Enhanced Heat Transf., vol. 26, pp. 429-449,2019.

  92. Haddad, Z., Abid, C., Mohamad, A.A., Rahli, O., and Bawazer, S., Natural Convection of Silica-Water Nanofluids based on Experimental Measured Thermophysical Properties: Critical Analysis, Heat Mass Transf, vol. 52, pp. 1649-1663,2016.

  93. Haddad, Z., Abu-Nada, E., Oztop, H.F., and Mataoui, A., Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement?, Int. J. Therm. Sci., vol. 57, pp. 152-162,2012.

  94. Hamid, K.A., Azmi, W.H., Nabil, M.F., Mamat, R., and Sharma, K.V., Experimental Investigation of Thermal Conductivity and Dynamic Viscosity on Nanoparticle Mixture Ratios of TiO2-SiO2 Nanofluids, Int. J. Heat Mass Transf., vol. 116, pp. 1143-1152,2018.

  95. Hamilton, R.L. and Crosser, O.K., Thermal Conductivity of Heterogeneous Two Component Systems, Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187-191,1962.

  96. Han, H., Zhang, Y., Wang, N., Samani, M.K., Ni, Y., Mijbil, Z.Y., Edwards, M., Xiong, S., Saaskilahti, K., Murugesan, M., and Fu, Y., Functionalization Mediates Heat Transport in Graphene Nanoflakes, Nature Commun., vol. 7, p. 11281,2016.

  97. Han, T.C., Bai, X., Thong, J.T., Li, B., and Qiu, C.-W., Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials, Adv. Mater., vol. 26, pp. 1731-1734,2014.

  98. Hassan, M., Marin, M., Ellahi, R., and Alamri, S.Z., Exploration of Convective Heat Transfer and Flow Characteristics Synthesis by Cu-Ag/Water Hybrid-Nanofluids, Heat Transf. Res., vol. 49, no. 18, pp. 1837-1848,2018.

  99. Hayat, T., Qayyum, S., Alsaedi, A., and Shafiq, A., Theoretical Aspects of Brownian Motion and Thermophoresis on Nonlinear Convective Flow of Magneto Carreau Nanofluid with Newtonian Conditions, Results Phys., vol. 10, pp. 521-528,2018.

  100. He, Q., Zeng, S., and Wang, S., Experimental Investigation on the Efficiency of Flat-Plate Solar Collectors withNanofluids, Appl. Therm. Eng., vol. 88, pp. 165-171,2015.

  101. He, X., Park, E.Y.H., Fowler, A., Yarmush, M.L., and Toner, M., Vitrification by Ultra-Fast Cooling at a Low Concentration of Cryoprotectants in a Quartz Micro-Capillary: A Study Using Murine Embryonic Stem Cells, Cryobiology, vol. 56, no. 3, pp. 223-232,2008.

  102. Hemmati-Sarapardeh, A., Varamesh, A., Husein, M.M., and Karan, K., On the Evaluation of the Viscosity of Nanofluid Systems: Modeling and Data Assessment, Renew. Sustain. Energy Rev., vol. 81, pp. 313-329,2018.

  103. Hentschke, R., On the Specific Heat Capacity Enhancement in Nanofluids, Nanoscale Res. Lett, vol. 11, p. 88,2016.

  104. Hjerrild, N.E., Crisostomo, F., Chin, R.L., Scott, J.A., Amal, R., and Taylor, R.A., Experimental Results for Tailored Spectrum Splitting Metallic Nanofluids for C-Si, Gaas, and Ge Solar Cells, IEEE J. Photo-voltaics, vol. 9, pp. 385-390,2019.

  105. Hojjat, M., Etemad, S.Gh., Bagheri, R., and Thibault, J., Thermal Conductivity of Non-Newtonian Nanofluids: Experimental Data and Modeling Using Neural Network, Int. J. Heat Mass Transf., vol. 54, pp. 1017-1023,2011.

  106. Hsieh, S.S., Leu, H.Y., and Liu, H.H., Spray Cooling Characteristics of Nanofluids for Electronic Power Devices, Nanoscale Res. Lett., vol. 10, p. 139,2015.

  107. Huang, K. and Deng, X., Enhanced Heat and Mass Transfer of Falling Liquid Films in Vertical Tubes, J. Enhanced Heat Transf., vol. 25, no. 1, pp. 79-96,2018.

  108. Hui, P.M., Zhang, X., Markworth, A.J., and Stroud, D., Thermal Conductivity of Graded Composites: Numerical Simulations and an Effective Medium Approximation, J. Mater Sci., vol. 34, no. 22, pp. 5497-5503,1999.

  109. Hung, T.-C. and Yan, W.-M., Enhancement of Thermal Performance in Double-Layered Microchannel Heat Sink withNanofluids, Int. J. Heat Mass Transf., vol. 55, pp. 3225-3238,2012.

  110. Hussein, A.M., Sharma, K.V., Bakar, R.A., and Kadirgama, K., A Review of Forced Convection Heat Transfer Enhancement and Hydrodynamic Characteristics of a Nanofluid, Renew. Sustain. Energy Rev., vol. 29, pp. 734-743,2014.

  111. Hwang, Y., Lee, J.K., Lee, C.H., Jung, Y.M., Cheong, S.I., Lee, C.G., Ku, B.C., and Jang, S.P., Stability and Thermal Conductivity Characteristics of Nanofluids, Thermochim. Acta, vol. 455, nos. 1-2, pp. 70-74, 2007.

  112. Iasiello, M., Cunsolo, S., Bianco, N., Chiu, W.K., andNaso, V., Fully Developed Convection Heat Transfer in Open-Cell Foams, J. Enhanced Heat Transf., vol. 25, nos. 4-5, pp. 333-346,2018.

  113. Ibrahim, N.I., Al-Sulaiman, F.A., Rahman, S., Yilbas, B.S., and Sahin, A.Z., Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications: A Critical Review, Renew. Sustain. Energy Rev., vol. 74, pp. 26-50,2017.

  114. Ilyas, S.U., Pendyala, R., and Marneni, N., Preparation, Sedimentation, and Agglomeration of Nanofluids, Chem. Eng. Technol, vol. 37, no. 12, pp. 2011-2021,2014.

  115. Ilyas, S.U., Pendyala, R., andNarahari, M., Stability and Thermal Analysis of MWCNT-Thermal Oil-Based Nanofluids, Colloids Surf. A, vol. 527, pp. 11-22,2017.

  116. Inoue, T., Teruya, Y., and Monde, M., Enhancement of Pool Boiling Heat Transfer in Water and Ethanol/Water Mixtures with Surface-Active Agent, Int. J. Heat Mass Transf., vol. 47, pp. 5555-5563, 2004.

  117. Ismael, M.A., Armaghani, T., and Chamkha, A.J., Mixed Convection and Entropy Generation in a Lid-Driven Cavity Filled with a Hybrid Nanofluid and Heated by a Triangular Solid, Heat Transf. Res., vol. 49, no. 17, pp. 1645-1665,2018.

  118. Jamshidi, N. and Mosaffa, A., Investigating the Effects of Geometric Parameters on Finned Conical Helical Geothermal Heat Exchanger and Its Energy Extraction Capability, Geothermics, vol. 76, pp. 177-189, 2018.

  119. Jang, S.P. and Choi, S.U.S., Cooling Performance of a Microchannel Heat Sink with Nanofluids, Appl. Therm. Eng., vol. 26, pp. 2457-2463,2006.

  120. Jang, S.P. and Choi, S.U.S., Role of Brownian Motion in the Enhanced Thermal Conductivity ofNanofluids, Appl. Phys. Lett., vol. 84, no. 21, pp. 4316-4318,2004.

  121. Jung, S. and Banerjee, D.J., A Simple Analytical Model for Specific Heat of Nanofluid with Tube Shaped and Disc Shaped Nanoparticles, ASME/JSME 2011 8th Thermal Engineering Joint Conf., p. T30023, 2011.

  122. Kakac, S. and Pramuanjaroenkij, A., Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Transf, vol. 52, pp. 3187-3196,2009.

  123. Kakac, S. and Pramuanjaroenkij, A., Single-Phase and Two-Phase Treatments of Convective Heat Transfer Enhancement with Nanofluids-A State-of-the-Art Review, Int. J. Therm. Sci., vol. 100, pp. 75-97, 2016.

  124. Karami, M. and Akhavan-Behabadi, M.A., Thermo-Optical Properties of Copper Oxide Nanofluids for Direct Absorption of Solar Radiation, Sol. Energy Mater. Sol. Cells, vol. 144,pp. 136-142,2016.

  125. Kasaeian, A., Azarian, R.D., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., and Pop, I., Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments, Int. J. Heat Mass Transf, vol. 107, pp. 778-791,2017.

  126. Kaya, H., Ekiciler, R., and Arslan, K., Entropy Generation Analysis of Forced Convection Flow in a Semicircular Microchannel with TiO2/Water Nanofluid, Heat Transf. Res., vol. 50, no. 4, pp. 335-348,2019.

  127. Keblinski, P., Eastman, J.A., and Cahill, D.G., Nanofluids for Thermal Transport, Mater. Today, vol. 8, pp. 36-44, 2005.

  128. Keblinski, P., Nanofluids for Enhanced Thermal Transport: Understanding and Controversy, Symposium II Nanoscale Heat Transport-From Fundamentals to Devices, Materials Research Soc. Spring Symp., San Francisco, USA, pp. 10-13,2007.

  129. Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transf., vol. 45, pp. 855-863,2002.

  130. Khademi, R., Mohebbi-Kalhori, D., and Razminia, A., Thermal Analysis of a Tumorous Vascular Tissue during Pulsed-Cryosurgery and Nano-Hyperthermia Therapy: Finite Element Approach, Int. J. Heat Mass Transf., vol. 137, pp. 1001-1013,2019.

  131. Khalil, W., Mohamed, A., Bayoumi, M., and Osman, T.A., Thermal and Rheological Properties of Industrial Mineral Gear Oil and Paraffinic Oil/CNTs Nanolubricants, Iranian J. Sci. Tachnol., vol. 42, no. 4, pp. 355-361,2018.

  132. Khanafer, K., Tavakkoli, F., Vafai, K., and AlAmiri, A., A Critical Investigation of the Anomalous Behavior of Molten Salt-Based Nanofluids, Int. Commun. Heat Mass Transf., vol. 69, pp. 51-58,2015.

  133. Khanlari, A., Sozen, A., Variyenli, H.I., and Metin, G.U.R.U., Comparison between Heat Transfer Charac-teristics of TiO2/Deionized Water and Kaolin/Deionized Water Nanofluids in the Plate Heat Exchanger, Heat Transf. Res., vol. 50, no. 5, pp. 435-450,2019.

  134. Khodadadi, H., Toghraie, D., and Karimipour, A., Effects of Nanoparticles to Present a Statistical Model for the Viscosity of MgO-Water Nanofluid, Powder Technol., vol. 342, pp. 166-180,2019.

  135. Khoshvaght-Aliabadi, M., and Sahamiyan, M., Performance of Nanofluid Flow in Corrugated Minichannels Heat Sink (CMCHS), Energy Convers. Manage, vol. 108, pp. 297-308,2016.

  136. Khoshvaght-Aliabadi, M., Hassani, S.M., Mazloumi, S.H., andNekoei, M., Effects of Nooks Configuration on Hydrothermal Performance of Zigzag Channels for Nanofluid-Cooled Microelectronic Heat Sink, Microelectron. Reliab., vol. 79, pp. 153-165,2017.

  137. Khudhair, A.M. and Farid, M.M., A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials, Energy Convers. Manage., vol. 45, pp. 263-275, 2004.

  138. Kianifar, A., Heris, S.Z., and Mahian, O., Exergy and Economic Analysis of a Pyramid-Shaped Solar Water Purification System: Active and Passive Cases, Energy, vol. 38, pp. 31-36,2012.

  139. Kim, H.J., Bang, I.C., and Onoe, J., Characteristic Stability of Bare Au-Water Nanofluids Fabricated by Pulsed Laser Ablation in Liquids, Opt. Lasers Eng., vol. 47, no. 5, pp. 532-538,2009.

  140. Kim, H., Jeong, J., and Kang, Y.T., Heat and Mass Transfer Enhancement for Falling Film Absorption Process by SiO2 Binary Nanofluids, Int. J. Refrig, vol. 35, pp. 645-651,2012.

  141. Kim, N.-H., Steam Condensation Enhancement and Fouling in Titanium Corrugated Tubes, J. Enhanced Heat Transf, vol. 26, pp. 59-74,2019.

  142. Kim, S.J., Bang, I.C., Buongiorno J., and Hu, L.W., Surface Wettability Change during Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux, Int. J. Heat Mass Transf., vol. 50, nos. 19-20, pp. 4105-4116,2007.

  143. Koo, J. and Kleinstreuer, C., A New Thermal Conductivity Model for Nanofluids, J. Nanopart. Res., vol. 6, pp. 577-588,2004.

  144. Koo, J. and Kleinstreuer, C., Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity ofNanofluids, Int. Commun. Heat Mass Transf., vol. 32, no. 9, pp. 1111-1118,2005.

  145. Krieger, I.M. and Dougherty, T. J., A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres, Trans. Soc. Rheol, vol. 3, pp. 137-152,1959.

  146. Krishnakumar, T.S., Sheeba, A., Mahesh, V., and Prakash, M.J., Heat Transfer Studies on Ethylene Glycol/Water Nanofluid Containing TiO2 Nanoparticles, Int. J. Refrig., vol. 102, pp. 55-61,2019.

  147. Kulkarni, D.P., Das, D.K., and Vajjha, R.S., Application ofNanofluids in Heating Buildings and Reducing Pollution, Appl. Energy, vol. 86, no. 12, pp. 2566-2573,2009.

  148. Kulkarni, D.P., Vajjha, R.S., Das, D.K., and Oliva, D., Application of Aluminum Oxide Nanofluids in Diesel Electric Generator as Jacket Water Coolant, Appl. Therm. Eng., vol. 28, pp. 1774-1781,2008.

  149. Kumar, N.R., Bhramara, P., Addis, B.M., Sundar, L.S., Singh, M.K., and Sousa, A.C., Heat Transfer, Friction Factor and Effectiveness Analysis of Fe3O4/Water Nanofluid Flow in a Double Pipe Heat Exchanger with Return Bend, Int. Commun. Heat Mass Transf., vol. 81, pp. 155-163,2017.

  150. Kumar, N., Sonawane, S.S., and Sonawane, S.H., Experimental Study of Thermal Conductivity, Heat Transfer and Friction Factor of Al2O3 based Nanofluid, Int. Commun. Heat Mass Transf., vol. 90, pp. 1-10, 2018b.

  151. Kumar, S., Dinesha, P., Gaggad, A., and Mehrotra, K., Performance of an Automotive Car Radiator Operated with Nanofluid-Based Coolant, Heat Transf. Res., vol. 49, no. 16, 2018a.

  152. Kumar, S., Kothiyal, A.D., Bisht, M.S., and Kumar, A., Effect of Nanofluid Flow and Protrusion Ribs on Performance in Square Channels: An Experimental Investigation, J. Enhanced Heat Transf., vol. 26, no. 1,pp. 75-100,2019.

  153. Kuzma-Kichta, Y. and Leontiev, A., Choice and Justification of the Heat Transfer Intensification Methods, J. Enhanced Heat Transf., vol. 25, pp. 465-564,2018.

  154. Laachachi, A., Ferriol, M., Cochez, M., Lopez Cuesta, J.M., and Ruch, D., A Comparison of the Role of Boehmite (AlOOH) and Alumina (Al2O3) in the Thermal Stability and Flammability of poly(methyl methacrylate), Polym. Degrad. Stab., vol. 94, pp. 1373-1378,2009.

  155. Lee, J. and Mudawar, I., Assesment of the Effectiveness of Nanofluids for Single Phase and Two-Phase Heat Transfer in Microchannels, Int. J. Heat Mass Transf., vol. 50, pp. 452-463,2007.

  156. Lee, J.H., Han, K., and Koo, J., A Novel Method to Evaluate Dispersion Stability of Nanofluids, Int. J. Heat Mass Transf., vol. 70, pp. 421-429,2014.

  157. Lee, S., Taylor, R.A., Dai, L., Prasher, R., andPhelan, P.E., The Effective Latent Heat of Aqueous Nanofluids, Mater. Res. Express, vol. 2, p. 065004,2015.

  158. Lemes, M.A., Rabelo, D., and De Oliveira, A.E., A Novel Method to Evaluate Nanofluid Stability Using Multivariate Image Analysis, Anal. Methods, vol. 9, no. 39, pp. 5826-5833,2017.

  159. Leong, K.C., Yang, C., and Murshed, S.M.S., A Model for the Thermal Conductivity of Nanofluids-The Effect of Interfacial Layer, J. Nanopart. Res., vol. 8, pp. 245-254,2006.

  160. Li, C.H. and Peterson, G.P., Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids), J. Appl. Phys., vol. 99, no. 8, p. 084314,2006.

  161. Li, D. and Kaner, R.B., Processable Stabilizer-Free Polyaniline Nanofiber Aqueous Colloids, Chem. Commun., vol. 14, no. 26, pp. 3286-3288,2005.

  162. Li, M., Chen, M., and Wu, Z., Enhancement in Thermal Property and Mechanical Property of Phase Change Microcapsule with Modified Carbon Nanotube, Appl. Energy, vol. 127, pp. 166-171,2014.

  163. Li, X., Zhu, D., and Wang, X., Evaluation on Dispersion Behavior of the Aqueous Copper Nano-Suspensions, J. Colloid Interface Sci., vol. 310, no. 2, pp. 456-463,2007.

  164. Li, Z.X., Sheikholeslami, M., and Bhatti, M.M., Effect of Lorentz Forces on Nanofluid Flow inside a Porous Enclosure with a Moving Wall Using Various Shapes of CuO Nanoparticles, Heat Transf. Res., vol. 50, no. 7, pp. 697-715,2019.

  165. Ligrani, P., McInturff, P., Suzuki, M., andNakamata, C., Winglet-Pair Target Surface Roughness Influences on Impingement Jet Array Heat Transfer, J. Enhanced Heat Transf., vol. 26, pp. 15-35,2019.

  166. Lin, Y.-H., Kang, S.-W., and Chen, H.-L., Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance, Appl. Therm. Eng., vol. 28, nos. 11-12, pp. 1312-1317,2008.

  167. Lin, Y., Jia, Y., Alva, G., and Fang, G., Review on Thermal Conductivity Enhancement, Thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage, Renew. Sustain. Energy Rev., vol. 82, pp. 2730-2742,2018.

  168. Liu, J. and Guo, Z., Unconventional Energy: Seeking the Ways to Innovate Energy Science and Technology, Frontiers Energy, vol. 12,no.2,pp. 195-197,2018.

  169. Liu, M., Lin, M.C., and Wang, C., Enhancements of Thermal Conductivities with Cu, CuO, and Carbon Nanotube Nanofluids and Application of MWNT/Water Nanofluid on a Water Chiller System, Nano. Res. Let., vol. 6, no. 1, p. 297,2011.

  170. Liu, Z., Yu, Z., Yang, T., Qin, D., Li, S., Zhang, G., Haghighat, F., and Joybari, M.M., A Review on Macro-Encapsulated Phase Change Material for Building Envelope Applications, Build. Environ., vol. 144, pp. 281-294,2018.

  171. Longo, G.A., Zilio, C., Ceseracciu, E., and Reggiani, M., Application of Artificial Neural Network (ANN) for the Prediction of Thermal Conductivity of Oxide-Water Nanofluids, Nano Energy, vol. 1, pp. 290-296,2012.

  172. Luo, Z., Wang, C., Wei, W., Xiao, G., andNi, M., Performance Improvement of aNanofluid Solar Collector based on Direct Absorption Collection (DAC) Concepts, Int. J. Heat Mass Transf., vol. 75, pp. 262-271, 2014.

  173. Ma, H.B., Wilson, C., and Borgmeyer, B., Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe, Appl. Phys. Lett, vol. 88, p. 143116,2006a.

  174. Ma, H.B., Wilson, C., Yu, Q., Park, K., Choi, S.U.S., and Tirumala, M., An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe, J. Heat Transf.. vol. 128, no. 11, pp. 1213-1216,2006b.

  175. Mageshbabu, D., Kabeel, A.E., Sathyamurthy, R., El-Agouz, S.A., Chamkha, A.J., Girija, M.S., and Madhu, B., Enhancing the Thermal Performance of a Micro Finned Tube with TiO2-Water Nanofluids Using Twisted Tape Inserts, Heat Transf. Res., vol. 50, no. 9, pp. 851-863,2019.

  176. Mahbubul,I.M., Elcioglu, E.B., Saidur, R., and Amalina, M.A., Optimization ofUltrasonication Period for Better Dispersion and Stability of TiO2-Water Nanofluid, Ultrason. Sonochem., vol. 37, pp. 360-367, 2017.

  177. Mahian, O., Kianifar, A., Heris, S.Z., and Wongwises, S., Natural Convection of Silica Nanofluids in Square and Triangular Enclosures: Theoretical and Experimental Study, Int. J. Heat Mass Transf., vol. 99, pp. 792-804,2016.

  178. Mahian, O., Kianifar, A., Heris, S.Z., Wen, D., Sahin, A.Z., and Wongwises, S., Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped with a Heat Exchanger, Nano Energy, vol. 36, pp. 134-155, 2017.

  179. Maiga, S.E.B., Nguyen, C.T., Galanis, N., and Roy, G., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, SuperlatticesMicrost., vol. 35, nos. 3-6, pp. 543-557,2004.

  180. Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Mare, T., and Coqueux, M., Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticles Suspension, Int. J. Numer. Methods Heat Fluid Flow, vol. 16, pp. 275-292,2006.

  181. Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., and Galanis, N., Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 530-546,2005.

  182. Manoj, U., Mishra, P.C., Sahoo, A.K., and Subhashree, P., Experimental Investigation of Bio-Oil based Nanofluid Spray Cooling during AISI 316 SS Turning, Advances in Interdisciplinary Engineering, M. Kumar, R. Pandey, and V. Kumar, Eds., Singapore: Springer, 2019.

  183. Manuchehrabadi, N., Gao, Z., Zhang, J.J., Ring, H.L., Shao, Q., Liu, F., McDermott, M., Fok, A., Rabin, Y., Brockbank, K.G., and Garwood, M., Improved Tissue Cryopreservation Using Inductive Heating of Magnetic Nanoparticles, Sci. Trans. Med, vol. 9, no. 379, p. eaah4586,2017.

  184. Martinez, V.A., Vasco, D.A., and Garcla-Herrera, C.M., Transient Measurement of the Thermal Conductivity as a Tool for the Evaluation of the Stability of Nanofluids Subjected to a Pressure Treatment, Int. Commun. Heat Mass Transf., vol. 91, pp. 234-238,2018.

  185. Masoumi, N., Sohrabi, N., and Behzadmehr, A., A New Model for Calculating the Effective Viscosity of Nanofluids, J. Phys. D, vol. 42, no. 5, p. 055501,2009.

  186. Matysiak, L. and Platek, R., Analytical, Numerical, and Experimental Study of a Robot Controller with a Forced Cooling System, Heat Transf. Res., vol. 50, no. 2, pp. 195-216,2019.

  187. Maxwell, J.C., A Treatise on Electricity and Magnetism, London, UK: Oxford University Press, 1873.

  188. Mehrali, M., Sadeghinezhad, E., Rosen, M.A., Akhiani, A.R., Latibari, S.T., Mehrali, M., and Metselaar, H.S.C., Heat Transfer and Entropy Generation for Laminar Forced Convection Flow of Graphene Nanoplatelets Nanofluids in a Horizontal Tube, Int. Commun. Heat Mass Transf., vol. 66, pp. 23-31, 2015.

  189. Mesgari, S., Hjerrild,N., Arandiyan, H., and Taylor, R.A., Carbon Nanotube Heat Transfer Fluids for Solar Radiant Heating of Buildings, Energy Build., vol. 175, pp. 11-16,2018.

  190. Meybodi, M.K., Daryasafar, A., Koochi, M.M., Moghadasi, J., Meybodi, R.B., and Ghahfarokhi, A.K., A Novel Correlation Approach for Viscosity Prediction of Water based Nanofluids of Al2O3, TiO2, SiO2, andCuO, J. TaiwanInst. Chem. Eng., vol. 58,pp. 19-27,2016.

  191. Michael, J.J. and Iniyan, S., Performance of Copper Oxide/Water Nanofluid in a Flat Plate Solar Water Heater under Natural and Forced Circulations, Energy Convers. Manage., vol. 95, pp. 160-169,2015.

  192. Missana, T. and Adell, A., On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability, J. Colloid Interface Sci, vol. 230, no. 1,pp. 150-156,2000.

  193. Mohammadi, M., Dadvar, M., and Dabir, B., TiO2/SiO2 Nanofluids as Novel Inhibitors for the Stability of Asphaltene Particles in Crude Oil: Mechanistic Understanding, Screening, Modeling, and Optimization, J Mol. Liq., vol. 238, pp. 326-340,2017.

  194. Moldoveanu, G.M. and Minea, A.A., Specific Heat Experimental Tests of Simple and Hybrid Oxide-Water Nanofluids: Proposing New Correlation, J. Mol. Liq., vol. 279, pp. 299-305,2019.

  195. Mondragon, R., Julia, J.E., Cabedo, L., and Navarrete, N., On the Relationship between the Specific Heat Enhancement of Salt-Based Nanofluids and the Ionic Exchange Capacity of Nanoparticles, Sci. Rep., vol. 8, no. 1,p. 7532,2018.

  196. Nabil, M.F., Azmi, W.H., Hamid, K.A., Mamat, R., and Hagos, F. Y., An Experimental Study on the Thermal Conductivity and Dynamic Viscosity of TiO2-SiO2 Nanofluids in Water: Ethylene Glycol Mixture, Int. Comm. Heat Mass Transf., vol. 86, pp. 181-189,2017.

  197. Nagasaka, Y. and Nagashima, A., Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method, J. Phys. E, vol. 14, pp. 1435-1440,1981.

  198. Naik, M.T., Janardana, G.R., and Sundar, L.S., Experimental Investigation of Heat Transfer and Friction Factor with Water-Propylene Glycol based CuO Nanofluid in a Tube with Twisted Tape Inserts, Int. Comm. Heat Mass Transf., vol. 46, pp. 13-21,2013.

  199. Nan, C.W., Liu, G., Lin, Y., and Li, M., Interface Effect on Thermal Conductivity of Carbon Nanotube Composites, Appl. Phys. Lett., vol. 85, no. 16, pp. 3549-3551,2004.

  200. Nan, Y., Cai, Y.M., and Guo, Z., Heat Transfer and Fluid Flow in a Water-Filled Glass Louver Subject to Solar Irradiation, Heat Transf. Res., vol. 51, pp. 25-39,2020.

  201. Nandakrishnan, S.L., Deepu, M., and Shine, S.R., Numerical Investigation of Heat-Transfer Enhancement in a Dimpled Diverging Microchannel with Al2O3-Water Nanofluid, J. Enhanced Heat Transf., vol. 25, pp. 347-365,2018.

  202. Nasir, F.M., Abdullah, M.Z., and Ismail, M.A., Experimental Investigation on the Heat Transfer Performance of Heat Pipes in Cooling HEV Lithium-Ion Batteries, Heat Transf. Res., vol. 49, no. 17, pp. 1745-1760,2018.

  203. Nayak, A.K., Singh, R.K., and Kulkarni, P.P., Measurement of Volumetric Thermal Expansion Coefficient of Various Nanofluids, Tech. Phys. Lett., vol. 36, pp. 696-698,2010.

  204. Nayak, S.K. and Mishra, P.C., Enhanced Heat Transfer from Hot Surface by Nanofluid based Ultra-Fast Cooling: An Experimental Investigation, J. Enhanced Heat Transf., vol. 26, pp. 415-428,2019.

  205. Nazari, M.A., Ghasempour, R., Ahmadi, M.H., Heydarian, G., and Shafii, M.B., Experimental Investigation of Graphene Oxide Nanofluid on Heat Transfer Enhancement of Pulsating Heat Pipe, Int. Commun. Heat Mass Transf, vol. 91, pp. 90-94,2018.

  206. Nguyen, C.T., Galanis, N., Roy, G., Divoux, S., and Gilbert, D., Pool Boiling Characteristics of Water-Alumina Nanofluids, Proc. of 13th Int. Heat Transfer Conf, Sydney, Australia, 2006.

  207. Nguyen, C.T., Roy, G., Gauthier, C., and Galanis, N., Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System, Appl. Therm. Eng., vol. 27, pp. 1501-1506,2007.

  208. Otanicar, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G., and Taylor, R.A., Nanofluid-Based Direct Absorption Solar Collector, J. Renew. Sustain. Energy, vol. 2, p. 033102,2010.

  209. Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transf, vol. 11, no. 2, pp. 151-170,1998.

  210. Pal, S.K. and Bhattacharyya, S., Enhanced Heat Transfer of Cu-Water Nanofluid in a Channel with Wall Mounted Blunt Ribs, J. Enhanced Heat Transf., vol. 25, pp. 61-78,2018.

  211. Pakdaman, M.F., Akhavan-Behabadi, M.A., and Razi, P., An Experimental Investigation on Thermo-Physical Properties and Overall Performance of MWCNT/Heat Transfer Oil Nanofluid Flow inside Vertical Helically Coiled Tubes, Exp. Therm. Fluid Sci, vol. 40, pp. 103-111,2012.

  212. Pang, C., Jung, J.Y., Lee, J.W., and Kang, Y.T., Thermal Conductivity Measurement of Methanol-Based Nanofluids with Al2O3 and SiO2 Nanoparticles, Int. J. Heat Mass Transf., vol. 55, nos. 21-22, pp. 5597-5602,2012.

  213. Park, K.-J. and Jung, D., Boiling Heat Transfer Enhancement with Carbon Nanotubes for Refrigerants Used in Building Air-Conditioning, Energy Build., vol. 39, pp. 1061-1064,2007a.

  214. Park, K.-J. and Jung, D., Enhancement of Nucleate Boiling Heat Transfer Using Carbon Nanotubes, Int. J. Heat Mass Transf., vol. 50, pp. 4499-4502,2007b.

  215. Parsian, A. and Akbari, M., New Experimental Correlation for the Thermal Conductivity of Ethylene Glycol Containing Al2O3-Cu Hybrid Nanoparticles, J. Therm. Anal. Calorim., vol. 131, no. 2, pp. 1605-1613,2018.

  216. Pastoriza-Gallego, M.J., Lugo, L., Legido, J.L., and Pineiro, M.M., Thermal Conductivity and Viscosity Measurements of Ethylene Glycol-Based Al2O3 Nanofluids, Nanoscale Res. Lett., vol. 6, no. 1, p. 221, 2011.

  217. Patel, H.E., Das, S.K., Sundararajan, T., SreekumaranNair, A., George, B., and Pradeep, T., Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., vol. 83, pp. 14, pp. 2931-2933,2003.

  218. Perez Huertas, S., Terpilowski, K., Wisniewska, M., and Zarko, V., Influence of Polyvinylpyrrolidone Adsorption on Stability of Silica Aqueous Suspension-Effects of Polymer Concentration and Solid Content, Physicochem. Prob. Miner. Process, vol. 53, no. 1, pp. 121-135,2017.

  219. Pinto, R.V. and Fiorelli, F.A.S., Review of the Mechanisms Responsible for Heat Transfer Enhancement Using Nanofluids, Appl. Thermal Eng., vol. 108, pp. 720-739,2016.

  220. Popa, I., Gillies, G., Papastavrou, G., and Borkovec, M., Attractive and Repulsive Electrostatic Forces between Positively Charged Latex Particles in the Presence of Anionic Linear Polyelectrolytes, J. Phys. Chem. B, vol. 114, no. 9, pp. 3170-3177,2010.

  221. Prasher, R., Bhattacharya, P., and Phelan, P.E., Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids), Phys. Rev. Lett., vol. 94, no. 2, p. 025901,2005.

  222. Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., and Keblinski, P., Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids, Appl. Phys. Lett., vol. 89, pp. 1431-1438,2006.

  223. Pryazhnikov, M.I., Minakov, A.V., Rudyak, Y.V., and Guzei, D.V., Thermal Conductivity Measurements of Nanofluids, Int. J. Heat Mass Transf., vol. 104, pp. 1275-1282,2017.

  224. Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., and Shimmin, R.G., Thermal Conductivity of Nanoparticle Suspensions, J. Appl. Phys, vol. 99, p. 084308,2006.

  225. Putra, N., Roetzel, W., and Das, S.K., Natural Convection of Nano-Fluids, Heat Mass Transf., vol. 398, pp. 775-784, 2003.

  226. Raeisian, L., Eggers, J.R., Lange, E.M., Mattke, T., Bode, A., and Kabelac, S., On the Controversy of Nanofluid Rheological Behavior, Int. J. Thermophys., vol. 40, p. 48,2019.

  227. Ragani, S. and Bahrami, A., Numerical Investigation of a Copper-Water Nanofluid Flowing in a Parallel Plate Channel, Heat Transf. Res., vol. 50, no. 7, pp. 617-632,2019.

  228. Raja, M., Vijayan, R., Dineshkumar, P., and Venkatesan, M., Review onNanofluids Characterization, Heat Transfer Characteristics and Applications, Renew. Sustain. Energy Rev., vol. 64, pp. 163-173,2016.

  229. Rashidi, S., Eskandarian, M., Mahian, O., and Poncet, S., Combination of Nanofluid and Inserts for Heat Transfer Enhancement, J. Therm. Anal. Calorim., vol. 135, pp. 437-460,2019.

  230. Ravikumar, S.V., Haldar, K., Jha, J.M., Chakraborty, S., Sarkar, I., Pal, S.K., and Chakraborty, S., Heat Transfer Enhancement Using Air-Atomized Spray Cooling with Water-Al2O3 Nanofluid, Int. J. Therm. Sci., vol. 96, pp. 85-93,2015.

  231. Robertis, E.De, Cosme, E.H.H., Neves, R.S., Kuznetsov, A.Yu., Campos, A.P.C., Landi, S.M., and Achete, C.A., Application of the Modulated Temperature Differential Scanning Calorimetry Technique for the Determination of the Specific Heat of Copper Nanofluids, Appl. Therm. Eng., vol. 41, pp. 10-17,2012.

  232. Routbort, J., Applications of Nanofluids: Current and Future, Argonne National Lab, Michellin North America, St. Gobain Corp., accessed from http://www.eere.energy.gov/industry/nanomanufacturing /pdfs/nanofluidsindustriaLcooling.pdf, 2009.

  233. Ruan, B. and Jacobi, A.M., Heat Transfer Characteristics of Multiwall Carbon Nanotube Suspensions (MWCNT Nanofluids) in Intertube Falling-Film Flow, Int. J. Heat Mass Transf, vol. 55, nos. 11-12, pp. 3186-3195,2012.

  234. Rueda-Garcia, D., Caban-Huertas, Z., Sanchez-Ribot, S., Marchante, C., Benages, R., Dubal, D.P., Ayyad, O., and Gomez-Romero, P., Battery and Supercapacitor Materials in Flow Cells. Electrochemical Energy Storage in a LiFePO4/Reduced Graphene Oxide Aqueous Nanofluid, Electrochim. Acta, vol. 281, pp. 594-600,2018.

  235. Ruhani, B., Toghraie, D., Hekmatifar, M., and Hadian, M., Statistical Investigation for Developing a New Model for Rheological Behavior of ZnO-Ag (50%-50%)/Water Hybrid Newtonian Nanofluid Using Experimental Data, Phys. A., vol. 525, pp. 741-751,2019.

  236. Saadati, H., Hadad, K., and Rabiee, A., Safety Margin and Fuel Cycle Period Enhancements of VVER-1000 Nuclear Reactor Using Water/Silver Nanofluid, Nucl. Eng. Technol, vol. 50, no. 5, pp. 639-647, 2018.

  237. Saeedinia, M.A., Akhavan-Behabadi, M.A., andRazi, P., Thermal and Rheological Characteristics of CuO-Base Oil Nanofluid Flow inside a Circular Tube, Int. Commun. Heat Mass Transf., vol. 39, pp. 152-159, 2012.

  238. Sahu, M.K. and Prasad, R.K., A Review of the Thermal and Hydrodynamic Performance of Solar Air Heater with Roughened Absorber Plates, J. Enhanced Heat Transf., vol. 23, pp. 47-89,2016.

  239. Said, Z., Saidur, R., Sabiha, M.A., Hepbasli, A., andRahim, N.A., Energy andExergy Efficiency of a Flat Plate Solar Collector Using pH Treated Al2O3 Nanofluid, J. Clean. Prod, vol. 112, pp. 3915-3926, 2016a.

  240. Said, Z., Saidur, R., and Rahim, N.A., Energy and Exergy Analysis of a Flat Plate Solar Collector Using Different Sizes of Aluminium Oxide based Nanofluid, J. Clean. Prod., vol. 133, pp. 518-530,2016b.

  241. Saidur, R., Kazi, S.N., Hossain, M.S., Rahman, M.M., and Mohammed, H.A., A Review on the Performance of Nanoparticles Suspended with Refrigerants and Lubricating Oils in Refrigeration Systems, Renew. Sustain. Energy Rev., vol. 15, pp. 310-323,2011a.

  242. Saidur, R., Leong, K.Y., and Mohammed, H.A., A Review on Applications and Challenges of Nanofluids, Renew. Sustain. Energy Rev., vol. 15, pp. 1646-1668,2011b.

  243. Sajadi, A.R. and Kazemi, M.H., Investigation of Turbulent Convective Heat Transfer and Pressure Drop of TiO2/Water Nanofluid In Circular Tube, Int. Commun. Heat Mass Transf., vol. 38, no. 10, pp. 1474-1478,2011.

  244. Samokhvalov, Y., Kolesnikov, A., Krotov, A., Parkin, A., Navasardyan, E.S., and Arkharov, I.A., Heat Transfer in the Structure of a Spiral-Wound Heat Exchanger for Liquefied Natural Gas Production: Review of Numerical Models for the Heat-Transfer Coefficient of Condensation for a Hydrocarbon Mixture in a Horizontal Tube, J. Enhanced Heat Transf., vol. 25, pp. 109-120,2018.

  245. Sarafraz, M.M. and Hormozi, F., Experimental Investigation on the Pool Boiling Heat Transfer to Aqueous Multi-Walled Carbon Nanotube Nanofluids on the Micro-Finned Surfaces, Int. J. Therm. Sci., vol. 100, pp. 255-266,2016.

  246. Sarafraz, M.M. and Hormozi, F., Pool Boiling Heat Transfer to Dilute Copper Oxide Aqueous Nanofluids, Int. J. Therm. Sci., vol. 90, pp. 224-237,2015.

  247. Sekhar, Y.R. and Sharma, K.V, Study of Viscosity and Specific Heat Capacity Characteristics of Water-Based Al2O3 Nanofluids at Low Particle Concentrations, J. Exp. Nanosci., vol. 10, no. 2, pp. 86-102, 2015.

  248. Selvakumar, P. and Suresh, S., Convective Performance of CuO/Water Nanofluid in an Electronic Heat Sink, Exp. Therm. Fluid Sci., vol. 40, pp. 57-63,2012.

  249. Selvam, C., Irshad, E.M., Lal, D.M., and Harish, S., Convective Heat Transfer Characteristics of Water-Ethylene Glycol Mixture with Silver Nanoparticles, Exp. Therm. Fluid Sci., vol. 77, pp. 188-196,2016.

  250. Sertkaya, A.A., Determination of the Thermophysical Properties of a Zeolite Nanofluid, Heat Transf. Res., vol. 49, pp. 583-596,2018.

  251. Setia, H., Gupta, R., and Wanchoo, R.K., Stability ofNanofluids, Mater. Sci. Forum, vol. 757, pp. 139-149, 2013.

  252. Sezer, N., Atieh, M.A., and Koc, M., A Comprehensive Review on Synthesis, Stability, Thermophysical Properties, and Characterization ofNanofluids, Powder Technol., vol. 344, pp. 404-431,2019.

  253. Shahrul, I.M., Mahbubul, I.M., Khaleduzzaman, S.S., Saidur, R., and Sabri, M.F.M., A Comparative Review on the Specific Heat ofNanofluids for Energy Perspective, Renew. Sustain. Energy Rev., vol. 38, pp. 88-98,2014.

  254. Sharifpur, M., Yousefi, S., and Meyer, J.P., A New Model for Density ofNanofluids Including Nanolayer, Int. J. Commun. Heat Mass Transf, vol. 78, pp. 168-174,2016.

  255. Sharma D. and Pandey, K.M., Review on Using Nanofluids for Heat Transfer Enhancement in Nuclear Power Plants, Kerntechnik, vol. 83, no. 5, pp. 426-438,2018.

  256. Sharma, K.V., Sarma, P.K., Azmi, W.H., Mamat, R., and Kadirgama, K., Correlations to Predict Friction and Forced Convection Heat Transfer Coefficients of Water based Nanofluids for Turbulent Flow in a Tub, Int. J. Micro. Nano. Therm. Fluid Trans., vol. 3, no. 4, p. 283,2012.

  257. Shatto, D.P. and Peterson, G.P., Flow Boiling Heat Transfer with Twisted Tape Inserts, J. Enhanced Heat Transf, vol. 24, pp. 21-45,2017.

  258. Sheikholeslami, M., CuO-Water Nanofluid Flow due to Magnetic Field inside a Porous Media Considering Brownian Motion, J. Mol. Liq, vol. 249, pp. 921-929,2018.

  259. Sheikholeslami, M., Gorji-Bandpy, M., and Ganji, D.D., Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices, Renew. Sustain. Energy Rev., vol. 49, pp. 444-469, 2015.

  260. Shen, S., Narayanaswamy, A., and Chen, G., Surface PhononPolaritons Mediated Energy Transfer between Nanoscale Gaps, Nano Lett, vol. 9, pp. 2909-2913,2009.

  261. Shin, D. and Banerjee, D., Enhanced Specific Heat Capacity of Nanomaterials Synthesized by Dispersing Silica Nanoparticles inEutectic Mixtures, J. Heat Transf., vol. 135, no. 3, p. 032801,2013.

  262. Shome, B. and Jensen, M.K., Review on Laminar Flow and Heat Transfer in Internally Finned Tubes, J. Enhanced Heat Transf., vol. 24, pp. 339-356,2017.

  263. Sidik, N.A.C., Kean, T.H., Chow, H.K., Rajaandra, A., Rahman, S., and Kaur, J., Performance Enhancement of Cold Thermal Energy Storage System Using Nanofluid Phase Change Materials: A Review, Int. Commun. Heat Mass Transf, vol. 94, pp. 85-95,2018.

  264. Singh, A.K. and Raykar, V.S., Microwave Synthesis of Silver Nanofluids with Polyvinylpyrrolidone (PVP) and Their Transport Properties, Colloid Polymer Sci., vol. 286, pp. 1667-1673,2008.

  265. Singh, D., Toutbort, J., and Chen, G., Heavy Vehicle Systems Optimization Merit Review and Peer Evaluation, Argonne National Laboratory, Lemont, IL, Annual Report, 2006.

  266. Sobhanifar, N., Ahmadloo, E., and Azizi, S., Prediction of Two-Phase Heat Transfer Coefficients in a Horizontal Pipe for Different Inclined Positions with Artificial Neural Networks, J. Heat Transf., vol. 137, p. 061009,2015.

  267. Sohel Murshed, S.M. and Estelle, P., A State of the Art Review on Viscosity of Nanofluids, Renew. Sustain. Energy Rev., vol. 76, pp. 1134-1152,2017.

  268. Song, B., Ganjeh, Y., Sadat, S., Thompson, D., Fiorino, A., Fernandez-Hurtado, V., Feist, J., Garcia-Vidal, F.J., Cuevas, J.C., Reddy, P., and Meyhofer, E., Enhancement of Near-Field Radiative Heat Transfer Using Polar Dielectric Thin Films, Nature Nanotech., vol. 10, pp. 253-258,2015.

  269. Sozen, A., C^iftci, E., Kecel, S., Guru, M., Variyenli, H.I., and Karakaya, U., Usage of a Diatomite-Containing Nanofluid as the Working Fluid in a Wickless Loop Heat Pipe: Experimental and Numerical Study, Heat Transf. Res., vol. 49, no. 17, pp. 1721-1744,2018.

  270. Strandberg, R. and Das, D.K., Influence of Temperature and Properties Variation on Nanofluids in Building Heating, Energy Convers. Manage., vol. 51, pp. 1381-1390,2010.

  271. Subhedar, D.G., Ramani, B.M., and Gupta, A., Experimental Investigation of Heat Transfer Potential of Al2O3/Water-Mono Ethylene Glycol Nanofluids as a Car Radiator Coolant, Case Stud. Therm. Eng., vol. 11, pp. 26-34,2018.

  272. Subramaniam, C.G., On the Effective Thermal Conductivity of Nanofluids with Fractal Aggregation, J. Heat Transf., vol. 141, no. 4, p. 044501,2019.

  273. Sultan, K.F., Experimental Analysis of Heat Transfer Enhancement and Flow with Cu, TiO2 Ethylene Glycol Distilled Water Nanofluid in Spiral Coil Heat, TikritJ. Eng. Sci, vol. 24, no. 3, pp. 63-77,2017.

  274. Sun, X.H., Yan, H., Massoudi, M., Chen, Z.H., Wu, W.T., and Sun, X.H., Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger, Energies, vol. 11, p. 919,2018.

  275. Sundar, L.S. and Sharma, K.V., Turbulent Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube with Twisted Tape Inserts, Int. J. Heat Mass Transf., vol. 53, nos. 7-8, pp. 1409-1416,2010a.

  276. Sundar, L.S. and Sharma, K.V., Heat Transfer Enhancements of Low Volume Concentration Al2O3 Nanofluid and with Longitudinal Strip Inserts in a Circular Tube, Int. J. Heat Mass Transf., vol. 53, nos. 19-20, pp. 4280-4286,2010b.

  277. Sundar, L.S., Singh, M.K., and Sousa, A.C.M., Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications, Int. Commun. Heat Mass Transf., vol. 44, pp. 7-14, 2013.

  278. Sundar, L.S., Otero-Irurueta, G., Singh, M.K., and Sousa, A.C., Heat Transfer and Friction Factor of Multi-Walled Carbon Nanotubes-Fe3O4 Nanocomposite Nanofluids Flow in a Tube with/without Longitudinal Strip Inserts, Int. J. Heat Mass Transf, vol. 100, pp. 691-703,2016.

  279. Taghizadeh-Tabari, Z., Heris, S.Z., Moradi, M., and Kahani, M., The Study on Application of TiO2/Water Nanofluid in Plate Heat Exchanger of Milk Pasteurization Industries, Renew. Sustain. Energy Rev., vol. 58, pp. 1318-1326,2016.

  280. Takabi, B. and Salehi, S., Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid, Adv. Mech. Eng., vol. 6, p. 147059,2014.

  281. Tang, E., Cheng, G., Ma, X., Pang, X., and Zhao, Q., Surface Modification of Zinc Oxide Nanoparticle by PMAA and Its Dispersion in Aqueous System, Appl. Surf. Sci., vol. 252, no. 14, pp. 5227-5232,2006.

  282. Tariq, H.A., Shoukat, A.A., Hassan, M., and Anwar, M., Thermal Management of Microelectronic Devices Using Micro-Hole Cellular Structure and Nanofluids, J. Therm. Anal. Calorim., vol. 136, p. 2171,2019.

  283. Taylor, R.P. and Hodge, B.K., A Review of Fully-Developed Nusselt Numbers and Friction Factors in Pipes with three-Dimensional Roughness, J. Enhanced Heat Transf, vol. 24, pp. 357-369,2017.

  284. Terekhov, V.I., Khafaji, H.Q., and Gorbachev, M.V., Heat and Mass Transfer Enhancement in Laminar Forced Convection Wet Channel Flows with Uniform Wall Heat Flux, J. Enhanced Heat Transf., vol. 25, pp. 565-577,2018.

  285. Thome, J.R., A Review on Falling Film Evaporation, J. Enhanced Heat Transf., vol. 24, pp. 483-497, 2017b.

  286. Thome, J.R., A Review on Shell-and-Tube Heat Exchangers for the Chemical Processing Industry: Heat Transfer Augmentation, J. Enhanced Heat Transf., vol. 24, pp. 427-441,2017a.

  287. Tiara, M., Chakraborty, S., Sarkar, I., Ashok, A., Pal, S.K., and Chakraborty, S., Heat Transfer Enhancement Using Surfactant based Alumina Nanofluid Jet from a Hot Steel Plate, Exp. Thermal FluidSci., vol. 89, pp. 295-303,2017.

  288. Timofeeva, E.V., Routbort, J.L., and Singh, D., Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids, J Appl. Phys, vol. 106, no. 1, p. 014304,2009.

  289. Toghraie, D., Akbari, O.A., Koveiti, A., and Mashayekhi, R., Numerical Investigation of Turbulent Nanofluid Flow and Two-Dimensional Forced-Convection Heat Transfer in a Sinusoidal Converging-Diverging Channel, Heat Transf. Res., vol. 50, pp. 671-695,2019.

  290. Tong, W., Bergles, A.E., and Jensen, M.K., Critical Review on Heat Flux and Pressure Drop of Subcooled Flow Boiling in Small-Diameter Tubes with Twisted-Tape Inserts, J. Enhanced Heat Transf., vol. 24, pp. 159-172,2017.

  291. Trisaksri, V. and Wongwises, S., Critical Review of Heat Transfer Characteristics of Nanofluids, Renew. Sustain. Energy Rev., vol. 11, pp. 512-523,2007.

  292. Trisaksri, V. and Wongwises, S., Nucleate Pool Boiling Heat Transfer of an Alternative Refrigerant with Nanoparticle Suspension, Int. J. Heat Mass Transf., vol. 52, pp. 1582-1588,2009.

  293. U.S. Department of Energy, About the Buildings Technologies, accessed from https://www.energy .gov/eere/buildings/aboutbuilding-technologies-office,2019.

  294. Vajjha, R.S. and Das, D.K., Specific Heat Measurement of Three Nanofluids and Development of New Correlations, J. Heat Transf, vol. 131, p. 071601,2009.

  295. Vanaki, Sh.M., Ganesan, P., and Mohammed, H.A., Numerical Study of Convective Heat Transfer of Nanofluids: A Review, Renew. Sustain. Energy Rev., vol. 54, pp. 1212-1239,2016.

  296. Vlachokostas, A. and Madamopoulos, N., Daylight and Thermal Harvesting Performance Evaluation of a Liquid Filled Prismatic Facade Using the Radiance Five-Phase Method and EnergyPlus, Build. Environ., vol. 126, pp. 396-409,2017.

  297. Vlachokostas, A. and Madamopoulos, N., Liquid Filled Prismatic Louver Faccade for Enhanced Daylighting in High-Rise Commercial Buildings, Opt. Express, vol. 23, pp. A805-A818,2015.

  298. Waghole, D.R., Warkhedkar, R.M., Kulkarni, V.S., and Shrivastva, R.K., Experimental Investigations on Heat Transfer and Friction Factor of Silver Nanofliud in Absorber/Receiver of Parabolic Trough Collector with Twisted Tape Inserts, Energy Procedia, vol. 45, pp. 558-567,2014.

  299. Wang, B., Wang, X., Lou, W., and Hao, J., Thermal Conductivity and Rheological Properties of Graphite/Oil Nanofluids, Colloids Surf A, vol. 414, pp. 125-131,2012.

  300. Wang, B.X., Zhou, L.P., and Peng, X.F., A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles, Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2665-2672, 2003.

  301. Wang, J.F., Xie, H.Q., Guo, Z., Cai, L., and Zhang, K., Using Organic Phase-Change Materials for Enhanced Energy Storage in Water Heaters: An Experimental Study, J. Enhanced Heat Transf., vol. 26, no. 2, pp. 167-178,2019.

  302. Wang, J.F., Xie, H.Q., Guo, Z., Guan, L.H., and Li, Y., Improved Thermal Properties of Paraffin Wax by the Addition of TiO2 Nanoparticles, Appl. Thermal Eng, vol. 73, pp. 1541-1547,2014.

  303. Wang, X.Q. and Mujumdar, A.S., Heat Transfer Characteristics of Nanofluids: A Review, Int. J. Therm. Sci, vol. 46, pp. 1-19,2007.

  304. Wang, X.W., Xu, X.F., and Choi, S.U.S., Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transf., vol. 13, no. 4, pp. 474-480,1999.

  305. Wasekar, V.M. and Manglik, R.M., Enhanced Heat Transfer in Nucleate Pool Boiling of Aqueous Surfactant and Polymeric Solutions, J. Enhanced Heat Transf., vol. 24, pp. 47-62,2017.

  306. Webb, R.L. and Kim, N.-H., Principles of Enhanced Heat Transfer, 2nd Edition, Boca Raton, FL: Taylor & Francis, 2005.

  307. Wen, D.S. and Ding, Y.L., Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions, Int. J. Heat Mass Transf., vol. 47, pp. 5181-5188, 2004.

  308. Wen, D.S. and Ding, Y.L., Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous based r-Alumina Nanofluids, J. Nanopart. Res., vol. 7, pp. 265-274,2005b.

  309. Wen, D.S. and Ding, Y.L., Formulation of Nanofluids for Natural Convective Heat Transfer Applications, Int. J. Heat Fluid Flow, vol. 26, pp. 855-864,2005a.

  310. Witharana, S., Palabiyik, I., Musina, Z., and Ding, Y.L., Stability of Glycol Nanofluids-The Theory and Experiment, Powder Technol., vol. 239, pp. 72-77,2013.

  311. Wong, K.V. and De Leon, O., Applications of Nanofluids: Current and Future, Adv. Mech. Eng., vol. 2, p. 519659,2010.

  312. Wright, L.M. and Han, J.-C., Heat Transfer Enhancement for Turbine Blade Internal Cooling, J. Enhanced Heat Transf., vol. 21, pp. 111-140,2014.

  313. Xing, M., Yu, J., and Wang, R., Performance of a Vertical Closed Pulsating Heat Pipe with Hydroxylated MWNTs Nanofluid, Int. J. Heat Mass Transf, vol. 112, pp. 81-88,2017.

  314. Xu, Y., Wang, X., Zhou, J., Song, B., Jiang, Z., Lee, E.M.Y., Huberman, S., Gleason, K.K., and Chen, G., Molecular Engineered Conjugate Polymer with High Thermal Conductivity, Sci. Adv., vol. 4, no. 3, p. eaar3031, 2018.

  315. Xuan, Y. and Li, Q., Heat Transfer Enhancement of Nanofluids, Int. J. Heat Fluid Flow, vol. 21, pp. 58-64, 2000.

  316. Xuan, Y. and Li, Q., Investigation on Convective Heat Transfer and Flow Features of Nanofluids, J. Heat Transf, vol. 125, no. 1,pp. 151-155,2003.

  317. Xuan, Y. and Roetzel, W., Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transf, vol. 43, no. 19, pp. 3701-3707,2000.

  318. Xuan, Y., Li, Q., and Hu, W., Aggregation Structure and Thermal Conductivity of Nanofluids, AIChE J, vol. 49, no. 4, pp. 1038-1043,2003.

  319. Xue, Q.Z., Model for Thermal Conductivity of Carbon Nanotube-Based Composites, Physica B, vol. 368, nos. 1-4, pp. 302-307,2005.

  320. Yan, J.-F. and Liu, J., Nanocryosurgery and Its Mechanisms for Enhancing Freezing Efficiency of Tumor Tissues, Nanomedicine, vol. 4, no. 1, pp. 79-87,2008.

  321. Yang, C., Li, W., Sano, Y., Mochizuki, M., and Nakayama, A., On the Anomalous Convective Heat Transfer Enhancement in Nanofluids: A Theoretical Answer to the Nanofluids Controversy, J. Heat Transf., vol. 135, p. 054504,2013.

  322. Yang, L. and Xu, X., A Renovated Hamilton-Crosser Model for the Effective Thermal Conductivity of CNTs Nanofluids, Int. Commun. Heat Mass Transf., vol. 81, pp. 42-50,2017.

  323. Yang, X. and Liu, Z.H., A Kind of Nanofluid Consisting of Surface-Functionalized Nanoparticles, Nanoscale Res. Lett., vol. 5, no. 8, pp. 1324-1328,2010.

  324. Yilmazoglu, M.Z., Gokalp, O., and Biyikoglu, A., Heat Removal Improvement in an Enclosure with Electronic Components for Air Conditioning Devices, J. Enhanced Heat Transf., vol. 26, pp. 1-14, 2019.

  325. You, S.M., Kim, J.H., and Kim, K.H., Effect ofNanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer, Appl. Phys. Lett., vol. 83, p. 3374,2003.

  326. Yousefi, T., Veysi, F., Shojaeizadeh, E., and Zinadini, S., An Experimental Investigation on the Effect of Al2O3-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors, Renew. Energy, vol. 39, pp. 293-298,2012.

  327. Yu, F., Chen, Y.Y., Liang, X., Xu, J., Lee, C., Liang, Q., Tao, P., and Deng, T., Dispersion Stability of Thermal Nanofluids, Prog. Nat. Sci. Mater., vol. 27, pp. 531-542,2017.

  328. Yu, W. and Choi, S.U.S., The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, J. Nanopart. Res., vol. 5, nos. 1-2, pp. 167-171,2003.

  329. Yu, W. and Xie, H., A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, J. Nanomaterials, vol. 2012, p. 435873,2012.

  330. Yu, W., Xie, H., Wang, X., and Wang, X.W., Significant Thermal Conductivity Enhancement for Nanofluids Containing Graphene Nanosheets, Phys. Lett. A, vol. 375, pp. 1323-1328,2011.

  331. Zamzamian, A., KeyanpourRad, M., KianiNeyestani, M., and Jamal-Abad, M.T., An Experimental Study on the Effect of Cu-Synthesized/EG Nanofluid on the Efficiency of Flat-Plate Solar Collectors, Renew. Energy, vol. 71, pp. 658-664,2014.

  332. Zeiny, A., Jin, H., Bai, L., Jin, G., and Wen, D.S., A Comparative Study of Direct Absorption Nanofluids for Solar Thermal Applications, Sol. Energy, vol. 161, pp. 74-82,2018.

  333. Zeng, J. and Xuan, Y.M., Enhanced Solar Thermal Conversion and Thermal Conduction of MWCNT-SiO2/Ag Binary Nanofluids, Appl. Energy, vol. 212, pp. 809-819,2018.

  334. Zhai, Y.L., Xia, G.D., Liu, X.F., and Li, Y.F., Heat Transfer Enhancement of Al2O3-H2O Nanofluids Flowing through a Micro Heat Sink with Complex Structure, Int. Commun. Heat Mass Transf., vol. 66, pp. 158-166,2015.

  335. Zhang, H., Chen, H.-J., Du, X., and Wen, D., Photothermal Conversion Characteristics of Gold Nanoparticle Dispersions, Sol. Energy, vol. 100, pp. 141-147,2014.

  336. Zhang, W.-H., Lin, W.-K., Yeh, C.-T., Chaing, S.-B., and Jao, C.-S., A Novel Liquid-Packaging Technology for Highly Reliable UV-LED Encapsulation, Heat Transf. Res., vol. 50, pp. 349-360,2019a.

  337. Zhang, X.D., Gao, J.Y., Zhang, P. J., and Liu, J., Comparison on Enhanced Phase Change Heat Transfer of Low Melting Point Metal Melting Using Different Heating Methods, J. Enhanced Heat Transf., vol. 26, pp. 179-194,2019b.

  338. Zheng, Z.M. and Wang, B., A Prediction Model for the Effective Thermal Conductivity of Nanofluids Considering Agglomeration and the Radial Distribution Function of Nanoparticles, Acta Mech. Sinica, vol. 34, no. 3, pp. 507-514,2018.

  339. Zhou, D.W., Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation, Int. J. Heat Mass Transf, vol. 47, pp. 3109-3117,2004.

  340. Zhou, M.Z., Xia, G.D., Li, J., Chai, L., and Zhou, L.J., Analysis of Factors Influencing Thermal Conductivity and Viscosity in Different Kinds of Surfactant Solutions, Exp. Thermal Fluid Sci., vol. 36, pp. 22-29, 2012.

  341. Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., and Yin, Y., Preparation and Thermal Conductivity of Suspensions of Graphite Nanoparticles, Carbon, vol. 45, no. 1, pp. 226-228,2007.

  342. Zhu, H.T., Han, D., Meng, Z., Wu, D., and Zhang, C.Y., Preparation and Thermal Conductivity of CuO Nanofluid via a Wet Chemical Method, Nano. Res. Lett., vol. 6, pp. 181-188,2011.

  343. Zimparov, V.D., Bonev, P. J., and Petkov, V.M., Benefits from the Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design: A Critical Review of Performance Evaluation, J. Enhanced Heat Transf., vol. 23, pp. 371-391,2016.


Articles with similar content:

ACTIVE HEAT TRANSFER ENHANCEMENT BY UTILIZING ELECTRIC FIELDS
Annual Review of Heat Transfer, Vol.7, 1996, issue 7
Akira Yabe, Yasuo Mori, Kunio Hijikata
MECHANISMS FOR ENHANCED EFFECTIVE THERMAL CONDUCTIVITY IN NANOFLUIDS SUSPENSIONS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Peter Vadasz
Implantable Nano-Neurotechnological Devices: Consideration of Ethical, Legal, and Social Issues and Implications
Journal of Long-Term Effects of Medical Implants, Vol.19, 2009, issue 1
James Giordano, Dennis K. McBride, Rohan Akhouri
EVALUATION OF MODELS FOR THE THERMAL CONDUCTIVITY OF NANOFLUIDS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2011, issue
Hikmet S. Aybar, M. Reza Azizian
NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN TWO QUARTZ PLATES
First Thermal and Fluids Engineering Summer Conference, Vol.13, 2015, issue
Hakan Salihoglu, Xianfan Xu, Woongsik Nam, Sheng Shen