图书馆订阅: Guest
生物医学工程评论综述™

每年出版 6 

ISSN 打印: 0278-940X

ISSN 在线: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Extending the Capabilities of Molecular Force Sensors via DNA Nanotechnology

卷 48, 册 1, 2020, pp. 1-16
DOI: 10.1615/CritRevBiomedEng.2020033450
Get accessGet access

摘要

At the nanoscale, pushing, pulling, and shearing forces drive biochemical processes in development and remodeling as well as in wound healing and disease progression. Research in the field of mechanobiology investigates not only how these loads affect biochemical signaling pathways but also how signaling pathways respond to local loading by triggering mechanical changes such as regional stiffening of a tissue. This feedback between mechanical and biochemical signaling is increasingly recognized as fundamental in embryonic development, tissue morphogenesis, cell signaling, and disease pathogenesis. Historically, the interdisciplinary field of mechanobiology has been driven by the development of technologies for measuring and manipulating cellular and molecular forces, with each new tool enabling vast new lines of inquiry. In this review, we discuss recent advances in the manufacturing and capabilities of molecular-scale force and strain sensors. We also demonstrate how DNA nanotechnology has been critical to the enhancement of existing techniques and to the development of unique capabilities for future mechanosensor assembly. DNA is a responsive and programmable building material for sensor fabrication. It enables the systematic interrogation of molecular biomechanics with forces at the 1- to 200-pN scale that are needed to elucidate the fundamental means by which cells and proteins transduce mechanical signals.

参考文献
  1. Wolff J. Das Gesetz der Transformation der Knochen. A Hirshwald. 1892;1:1-152. .

  2. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677-89. .

  3. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosissus-ceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA. 2004;101(41):14871-6. .

  4. Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest. 2016;126(3):821-8. .

  5. Mammoto T, Mammoto A, Ingber DE. Mechanobiology and developmental control. Annu Rev Cell Dev Biol. 2013 Oct 6;29(1):27-61. .

  6. Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker's guide to mechanobiology. Dev Cell. 2011;21(1):35-47. .

  7. Ashe HL, Briscoe J. The interpretation of morphogen gradients. Development. 2006;133(3):385-94. .

  8. Mammoto T, Ingber DE. Mechanical control of tissue and organ development. Development. 2010;137(9):1407-20. .

  9. Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci. 2012;125(13):3061-73. .

  10. Shorr AZ, Sonmez UM, Minden JS, Leduc PR. High-throughput mechanotransduction in Drosophila em-bryos with mesofluidics. Lab Chip. 2019;(19):1141-52. .

  11. Taylor RE, Mukundan V, Pruitt BL. Tools for studying biomechanical interactions in cells. In: Mechanobiol Cell-Cell Cell-Matrix Interact; 2011. p. 233-265. .

  12. Ma VPY, Salaita K. DNA nanotechnology as an emerging tool to study mechanotransduction in living systems. Small. 2019;15(26):e1900961 .

  13. Neuman KC, Nagy A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008;5(6):491-505. .

  14. Campas O. A toolbox to explore the mechanics of living embryonic tissues. Semin Cell Dev Biol. 2016;55: 119-130. .

  15. Polacheck WJ, Chen CS. Measuring cell-generated forces: A guide to the available tools. Nat Methods. 2016;13(5): 415-23. .

  16. Sugimura K, Lenne P-F, Graner F. Measuring forces and stresses in situ in living tissues. Development. 2016;143(2):186-96. .

  17. Taylor RE, Mukundan V, Pruitt BL. Tools for studying biomechanical interactions in cells. In: Wagoner Johnson A, Harley B, editors. Mechanobiology of cell-cell and cell-matrix interactions. Springer; 2011. p. 233-66. .

  18. Roca-Cusachs P, Conte V, Trepat X. Quantifying forces in cell biology. Nat Cell Biol. 2017;19(7):742. .

  19. Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature. 1994;368(6467):113-9. .

  20. Lin G, Pister KSJ, Roos KP. Surface micromachined polysilicon heart cell force transducer. J Microelectromechanical Syst. 2000;9(1):9-17. .

  21. Nishimura S, Yasuda SI, Katoh M, Yamada KP, Yamashita H, Saeki Y, Sunagawa K, Nagai R, Hisada T, Sugiura S. Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. Am J Physiol-Hear Circ Physiol. 2004;287(1):H196-202. .

  22. Yasuda SI, Sugiura S, Kobayakawa N, Fujita H, Yamashita H, Katoh K, Saeki Y, Kaneko H, Suda Y, Nagai R, Sugi H. A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers. Am J Physiol Hear Circ Physiol. 2001;281(3):H1442-6. .

  23. Iribe G, Helmes M, Kohl P. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am J Physiol-Hear Circ Physiol. 2007;292(3):H1487-97. .

  24. Park S-J, Goodman MB, Pruitt BL. Analysis of nematode mechanics by piezoresistive displacement clamp. Proc Natl Acad Sci USA. 2007;104(44):17376-81. .

  25. Ham TR, Collins KL, Hoffman BD. Molecular tension sensors: Moving beyond force. Curr Opin Biomed Eng. 2019;12:83-94. .

  26. Ma VP-Y, Salaita K. A brighter force gauge for cells. Elife. 2018;7:e38959. .

  27. Jurchenko C, Salaita KS. Lighting up the force: Inves-tigating mechanisms of mechanotransduction using fluorescent tension probes. Mol Cell Biol. 2015;35(15): 2570-82. .

  28. Kong HJ, Polte TR, Alsberg E, Mooney DJ. FRET measurement of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci USA. 2005;102(12):4300-5. .

  29. Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA, Luna-Morris S, Vogel V. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 2007;5(10):e268. .

  30. Meng F, Suchyna TM, Sachs F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 2008;275(12):3072-87. .

  31. Cost A-L, Ringer P, Chrostek-Grashoff A, Grashoff C. How to measure molecular forces in cells: A guide to evaluating genetically-encoded FRET-based tension sensors. Cell Mol Bioeng. 2015;8(1):96-105. .

  32. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 2010;466(7303):263-6. .

  33. Forster T. Energiewanderung und fluoreszenz. Naturwis-senschaften. 1946;33:166-75. .

  34. Forster T. Zwischenmolekulare Energiewanderung und fluoreszenz. Ann Phys. 1948;(437):55-75. .

  35. Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat Methods. 2008;5(6):507-16. .

  36. LaCroix AS, Rothenberg KE, Berginski ME, Urs AN, Hoffman BD. Construction, imaging, and analysis of FRET-based tension sensors in living cells. Methods Cell Biol. 2015;125:161-86. .

  37. Austen K, Kluger C, Freikamp A, Chrostek-Grashoff A, Grashoff C. Generation and analysis of biosensors to measure mechanical forces within cells. Methods Mol Biol. 2013;1066:169-84. .

  38. Guo J, Sachs F, Meng F. Fluorescence-based force/tension sensors: A novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid Redox Signal. 2014;20(6):986-99. .

  39. Ringer P, WeiBl A, Cost AL, Freikamp A, Sabass B, Mehlich A, Tramier M, Rief M, Grashoff C. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat Methods. 2017;14(11):1090-6. .

  40. Lemke SB, Weidemann T, Cost AL, Grashoff C, Schnorrer F. A small proportion of talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biol. 2019;17(3):e3000057. .

  41. LaCroix AS, Lynch AD, Berginski ME, Hoffman BD. Tunable molecular tension sensors reveal extension-based control of vinculin loading. Elife. 2018;7:e33927. .

  42. Muller DJ, Helenius J, Alsteens D, Dufrne YF. Force probing surfaces of living cells to molecular resolution. Nat Chem Biol. 2009;5(6):383-90. .

  43. Stabley DR, Jurchenko C, Marshall SS, Salaita KS. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat Methods. 2011;9(1):64-7. .

  44. Liu Y, Galior K, Ma VP-Y, Salaita K. Molecular tension probes for imaging forces at the cell surface. Acc Chem Res. 2017;50(12):2915-24. .

  45. Jurchenko C, Chang Y, Narui Y, Zhang Y, Salaita KS. Integrin-generated forces lead to streptavidin-biotin unbinding in cellular adhesions. Biophys J. 2014;106(7):1436-46. .

  46. Woodside MT, Behnke-Parks WM, Larizadeh K, Travers K, Herschlag D, Block SM. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci USA. 2006;103(16):6190-5. .

  47. Woodside MT, Anthony PC, Behnke-Parks WM, Lariza- deh K, Herschlag D, Block SM. Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science. 2006;314(5801):1001-4. .

  48. Blakely BL, Dumelin CE, Trappmann B, McGregor LM, Choi CK, Anthony PC, Duesterberg VK, Baker BM, Block SM, Liu DR, Chen CS. A DNA-based molecular probe for optically reporting cellular traction forces. Nat Methods. 2014;11(12):1229-32. .

  49. Zhang Y, Ge C, Zhu C, Salaita K. DNA-based digital ten-sion probes reveal integrin forces during early cell adhesion. Nat Commun. 2014;5:5167. .

  50. Zhang Y, Qiu Y, Blanchard AT, Chang Y, Brockman JM, Ma VPY, Lam WA, Salaita K. Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation. Proc Natl Acad Sci USA. 2018;115(2):325-30. .

  51. Wang X, Ha T. Defining single molecular forces required to activate integrin and notch signaling. Science. 2013;340(6135):991-4. .

  52. Murad Y, Li ITS. Quantifying molecular forces with serially connected force sensors. Biophys J. 2019; 116(7): 1282-91. .

  53. Ma R, Kellner AV, Ma VPY, Su H, Deal BR, Brockman JM, Salaita K. DNA probes that store mechanical information reveal transient piconewton forces applied by T cells. Proc Natl Acad Sci USA. 2019;116(34):16949-54. .

  54. Ma VPY, Liu Y, Blanchfield L, Su H, Evavold BD, Salaita K. Ratiometric tension probes for mapping receptor forces and clustering at intermembrane junctions. Nano Lett. 2016;16(7):4552-9. .

  55. Brockman JM, Blanchard AT, Pui-Yan V, Derricotte WD, Zhang Y, Fay ME, Lam WA, Evangelista FA, Mattheyses AL, Salaita K. Mapping the 3D orientation of piconewton integrin traction forces. Nat Methods. 2018;15(2):115-8. .

  56. Glazier R, Brockman JM, Bartle E, Mattheyses AL, Destaing O, Salaita K. DNA mechanotechnology reveals that integrin receptors apply pN forces in podosomes on fluid substrates. Nat Commun. 2019;10(1):4507. .

  57. Liu Y, Medda R, Liu Z, Galior K, Yehl K, Spatz JP, Cavalcanti-Adam EA, Salaita K. Nanoparticle tension probes patterned at the nanoscale: Impact of integrin clustering on force transmission. Nano Lett. 2014;14(10):5539-46. .

  58. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc. 2005;127(9):3115-9. .

  59. Zhao B, O'Brien C, Mudiyanselage APKKK, Li N, Bagheri Y, Wu R, Sun Y, You M. Visualizing intercellular tensile forces by DNA-based membrane molecular probes. J Am Chem Soc. 2017;139(50):18182-5. .

  60. Zhao B, Li N, Xie T, Liang C, Bagheri Y, Sun Y, You M. Quantifying tensile forces at cell-cell junctions with a DNA-based fluorescent probe. bioRxiv. 2020. doi: 10.1101/2020.01.07.897249. .

  61. Morimatsu M, Mekhdjian AH, Adhikari AS, Dunn AR. Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 2013;13(9):3985-9. .

  62. Morimatsu M, Mekhdjian AH, Chang AC, Tan SJ, Dunn AR. Visualizing the interior architecture of focal adhesions with high-resolution traction maps. Nano Lett. 2015;15(4):2220-8. .

  63. Zhao Y, Sarkar A, Wang X. Peptide nucleic acid based tension sensor for cellular force imaging with strong DNase resistance. Biosens Bioelectron. 2020;150:111959. .

  64. LaCroix AS, Rothenberg KE, Hoffman BD. Molecu-larscale tools for studying mechanotransduction. Annu Rev Biomed Eng. 2015;17(1):287-316. .

  65. Seeman NC. Nucleic acid junctions and lattices. J Theor Biol. 1982;99(2):237-47. .

  66. Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297-302. .

  67. Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H. A primer to scaffolded DNA origami. Nat Methods. 2011;8(3):221-9. .

  68. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459(7243):73-6. .

  69. Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 2009;9(6):2445-7. .

  70. Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Hogberg B. DNA rendering of polyhedral meshes at the nanoscale. Nature. 2015;523(7561):441-4. .

  71. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 2009;459(7245):414-8. .

  72. Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. DNA origami with complex curvatures in three-dimensional space. Science. 2011;332(6027):342-6. .

  73. DeLuca M, Shi Z, Castro CE, Arya G. Dynamic DNA nanotechnology: Toward functional nanoscale devices. Nanoscale Horizons. 2019;(5):182-201. .

  74. Ijas H, Nummelin S, Shen B, Kostiainen MA, Linko V. Dynamic DNA origami devices: from strand-displacement reactions to external-stimuli responsive systems. Int J Mol Sci. 2018;19(7):E2114. .

  75. Rothemund PWK, Ekani-Nkodo A, Papadakis N, Kumar A, Fygenson DK, Winfree E. Design and characterization of programmable DNA nanotubes. J Am Chem Soc. 2004;126(50):16344-52. .

  76. Yin P, Hariadi RF, Sahu S, Choi HMT, Sung HP, LaBean TH, Reif JH. Programming DNA tube circumferences. Science. 2008;321(5890):824-6. .

  77. Ong LL, Hanikel N, Yaghi OK, Grun C, Strauss MT, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang P, Kishi JY, Myhrvold C, Zhu A, Jungmann R, Bellot G, Ke Y, Yin P. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature. 2017;552(7683):72-7. .

  78. Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles. Nature. 2012;485(7400): 623-6. .

  79. Schiffels D, Liedl T, Fygenson DK. Nanoscale structure and microscale stiffness of DNA nanotubes. ACS Nano. 2013;7(8):6700-10. .

  80. Pfitzner E, Wachauf C, Kilchherr F, Pelz B, Shih WM, Rief M, Dietz H. Rigid DNA beams for high-resolution single-molecule mechanics. Angew Chemie Int Ed. 2013;52(30):7766-71. .

  81. Kilchherr F, Wachauf C, Pelz B, Rief M, Zacharias M, Dietz H. Single-molecule dissection of stacking forces in DNA. Science. 2016;353(6304):aaf5508. .

  82. Martin TG, Bharat TAM, Joerger AC, Bai XC, Praetorius F, Fersht AR, Dietz H, Scheres SHW. Design of a molecular support for cryo-EM structure determination. Proc Natl Acad Sci USA. 2016;113(47):E7456-63. .

  83. Schmied JJ. Fluorescence and super-resolution standards based on DNA origami. Nat Methods. 2012;9:1133-4. .

  84. Schmied JJ, Raab M, Forthmann C, Pibiri E, Wunsch B, Dammeyer T, Tinnefeld P. DNA origami-based standards for quantitative fluorescence microscopy. Nat Protoc. 2014;9(6):1367-91. .

  85. Selnihhin D, Sparvath SM, Preus S, Birkedal V, Andersen ES. Multifluorophore DNA origami beacon as a biosensing platform. ACS Nano. 2018;12(6):5699-708. .

  86. Hudoba MW, Luo Y, Zacharias A, Poirier MG, Castro CE. Dynamic DNA origami device for measuring compressive depletion forces. ACS Nano. 2017;11(7):6566-73. .

  87. Nickels PC, Wunsch B, Holzmeister P, Bae W, Kneer LM, Grohmann D, Tinnefeld P, Liedl T. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science. 2016;354(6310):305-7. .

  88. Liedl T, Hogberg B, Tytell J, Ingber DE, Shih WM. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol. 2010;5(7):520-4. .

  89. Kuzuya A, Ohya Y. Nanomechanical molecular devices made ofDNA origami. Acc Chem Res. 2014;47(6):1742-9. .

  90. Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H. Uncovering the forces between nucleosomes using DNA origami. Sci Adv. 2016;2(11):e1600974. .

  91. Le JV, Luo Y, Darcy MA, Lucas CR, Goodwin MF, Poirier MG, Castro CE. Probing nucleosome stability with a DNA origami nanocaliper. ACS Nano. 2016;10(7):7073-84. .

  92. Funke JJ, Ketterer P, Lieleg C, Korber P, Dietz H. Exploring nucleosome unwrapping using DNA origami. Nano Lett. 2016;6(12):7891-8. .

  93. Derr ND, Goodman BS, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science. 2012;338(6107):662-5. .

  94. Hariadi RF, Cale M, Sivaramakrishnan S. Myosin lever arm directs collective motion on cellular actin network. Proc Natl Acad Sci USA. 2014;111(11):4091-6. .

  95. Hariadi RF, Sommese RF, Adhikari AS, Taylor RE, Sutton S, Spudich JA, Sivaramakrishnan S. Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments. Nat Nanotechnol. 2015;10(8):696-700. .

  96. Iwaki M, Wickham SF, Ikezaki K, Yanagida T, Shih WM. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads. Nat Commun. 2016;7(1):13715. .

  97. Shaw A, Hoffecker IT, Smyrlaki I, Rosa J, Grevys A, Bratlie D, Sandlie I, Michaelsen TE, Andersen JT, Hogberg B. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat Nanotechnol. 2019;14(2):184-90. .

  98. Petzold BC, Park SJ, Mazzochette EA, Goodman MB, Pruitt BL. MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation. Integr Biol (Camb). 2013;5(6):853-64. .

  99. Dutta PK, Zhang Y, Blanchard AT, Ge C, Rushdi M, Weiss K, Zhu C, Ke Y, Salaita K. Programmable multivalent DNA-origami tension probes for reporting cellular traction forces. Nano Lett. 2018;18(8):4803-11. .

  100. Czogalla A, Franquelim HG, Schwille P. DNA nanostructures on membranes as tools for synthetic biology. Biophys J. 2016;110(8):1698-707. .

  101. Hernandez-Ainsa S, Misiunas K, Thacker VV, Hemmig EA, Keyser UF. Voltage-dependent properties of DNA origami nanopores. Nano Lett. 2014;14(3):1270-4. .

  102. Hernandez-Ainsa S, Keyser UF. DNA origami nanopores: Developments, challenges and perspectives. Nanoscale. 2014;6(23):14121-32 .

  103. Burns JR, Gopfrich K, Wood JW, Thacker VV, Stulz E, Keyser UF, Howorka S. Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor. Angew Chemie Int Ed. 2013;52(46):12069-72. .

  104. Shrestha P, Jonchhe S, Emura T, Hidaka K, Endo M, Sugiyama H, Mao H. Confined space facilitates G-quadruplex formation. Nat Nanotechnol. 2017;12(6):582-8. .

  105. Liu Y, Kumar S, Taylor RE. Mix-and-match nanobi-osensor design: Logical and spatial programming of biosensors using self-assembled DNA nanostructures. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018; 10(6):e1518. .

  106. Shaw A, Lundin V, Petrova E, Fordos F, Benson E, Al-Amin A, Herland A, Blokzijl A, Hogberg B, Teixeira AI. Spatial control of membrane receptor function using ligand nanocalipers. Nat Methods. 2014;11(8):841-6. .

  107. Gerling T, Kube M, Kick B, Dietz H. Sequence-program-mable covalent bonding of designed DNA assemblies. Sci Adv. 2018;4(8):eaau1157. .

  108. Perrault SD, Shih WM. Virus-inspired membrane encap-sulation of DNA nanostructures to achieve in vivo stability. ACS Nano. 2014;8(5):5132-40. .

  109. Ponnuswamy N, Bastings MMC, Nathwani B, Ryu JH, Chou LYT, Vinther M, Li WA, Anastassacos FM, Mooney DJ, Shih WM. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat Commun. 2017;8:15654. .

  110. Kiviaho JK, Linko V, Ora A, Tiainen T, Jarvihaavisto E, Mikkila J, Tenhu H, Nonappa N, Kostiainen MA. Cationic polymers for DNA origami coating-examining their binding efficiency and tuning the enzymatic reaction rates. Nanoscale. 2016;8(22):11674-80. .

  111. Stephanopoulos N. Strategies for stabilizing DNA nano-structures to biological conditions. Chem BioChem. 2019;20(17):2191-7. .

  112. Ramakrishnan S, Ijas H, Linko V, Keller A. Structural stability of DNA origami nanostructures under application-specific conditions. Comput Struct Biotechnol J. 2018;16:342-9. .

  113. Liu J, Song L, Liu S, Jiang Q, Liu Q, Li N, Wang ZG, Ding B. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett. 2018;18(6):3328-34. .

  114. Zeng Y, Liu J, Yang S, Liu W, Xu L, Wang R. Time-lapse live cell imaging to monitor doxorubicin release from DNA origami nanostructures. J Mater Chem B. 2018;6(11):1605-12. .

  115. Wang P, Rahman MA, Zhao Z, Weiss K, Zhang C, Chen Z, Hurwitz SJ, Chen ZG, Shin DM, Ke Y. Visualization of the cellular uptake and trafficking of DNA origami nanostructures in cancer cells. J Am Chem Soc. 2018;140(7):2478-84. .

  116. Balakrishnan D, Wilkens GD, Heddle JG. Delivering DNA origami to cells. Nanomedicine. 2019;14(7):911-25. .

  117. Zhang S, Metelev V, Tabatadze D, Zamecnik PC, Bogdanov A. Fluorescence resonance energy transfer in near-infrared fluorescent oligonucleotide probes for detecting protein-DNA interactions. Proc Natl Acad Sci USA. 2008;105(11):4156-61. .

  118. Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H. Biotechnological mass production of DNA origami. Nature. 2017;552(7683):84-7. .

对本文的引用
  1. Wang Weitao, Arias D. Sebastian, Deserno Markus, Ren Xi, Taylor Rebecca E., Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics, APL Bioengineering, 4, 4, 2020. Crossref

  2. Roka-Moiia Yana, Walawalkar Vismaya, Liu Ying, Italiano Joseph E., Slepian Marvin J., Taylor Rebecca E., DNA Origami–Platelet Adducts: Nanoconstruct Binding without Platelet Activation, Bioconjugate Chemistry, 33, 7, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain