图书馆订阅: Guest
生物医学工程评论综述™

每年出版 6 

ISSN 打印: 0278-940X

ISSN 在线: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Models for Thermal Damage in Tissues: Processes and Applications

卷 38, 册 1, 2010, pp. 1-20
DOI: 10.1615/CritRevBiomedEng.v38.i1.20
Get accessGet access

摘要

Irreversible thermal alterations in tissue function and structure are used in clinical applications to achieve diverse goals, from lower-temperature tumor ablation to higher-temperature tissue fusion and surgical cutting. The typical formulation in tumor hyperthermia studies, the thermal iso-effect dose, derives from cell-survival studies but describes a single process only over a limited range of temperatures and is thus not suitable for multiple higher-temperature events. Many other thermal damage processes have been described using the Arrhenius kinetic rate of formation approach, which has the advantage that it is inherently quantitative in nature and can easily be compared with quantitative markers of injury or histologic section. The vast majority of Arrhenius studies have been directed toward measurable cellular effects at relatively low temperatures. Some emphasis in this paper has been placed on what is known of higher-temperature processes to support the theme of this issue. This review compares and contrasts the two thermal-damage formulations and reviews methods to convert between them.

对本文的引用
  1. Payne Stephen, Flanagan Ronan, Pollari Mika, Alhonnoro Tuomas, Bost Claire, O'Neill David, Peng Tingying, Stiegler Philipp, Image-based multi-scale modelling and validation of radio-frequency ablation in liver tumours, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 1954, 2011. Crossref

  2. Prakash Punit, Salgaonkar Vasant A., Diederich Chris J., Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: Applications for device design, feedback control and treatment planning, International Journal of Hyperthermia, 29, 4, 2013. Crossref

  3. Pearce John A., Comparative analysis of mathematical models of cell death and thermal damage processes, International Journal of Hyperthermia, 29, 4, 2013. Crossref

  4. Flanagan Dennis, The Bis-Acryl Stent, Journal of Oral Implantology, 39, 1, 2013. Crossref

  5. EYERLY STEPHANIE A., VEJDANI‐JAHROMI MARYAM, DUMONT DOUGLAS M., TRAHEY GREGG E., WOLF PATRICK D., The Evolution of Tissue Stiffness at Radiofrequency Ablation Sites During Lesion Formation and in the Peri‐Ablation Period, Journal of Cardiovascular Electrophysiology, 26, 9, 2015. Crossref

  6. McWilliams Brogan T., Schnell Emily E., Curto Sergio, Fahrbach Thomas M., Prakash Punit, A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation, IEEE Transactions on Biomedical Engineering, 62, 9, 2015. Crossref

  7. Wangmao Liu , Xianqi Lin , Fangsen Yang , Jiangjie Zeng , Hongbo Song , Ying Cui , Microwave Ablation Antenna with the ablation pattern being a figure-of-eight, 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2016. Crossref

  8. Pearce John, Mathematical models of laser-induced tissue thermal damage, International Journal of Hyperthermia, 27, 8, 2011. Crossref

  9. Fankell Douglas P., Kramer Eric, Cezo James, Taylor Ken D., Ferguson Virginia L., Rentschler Mark E., A Novel Parameter for Predicting Arterial Fusion and Cutting in Finite Element Models, Annals of Biomedical Engineering, 44, 11, 2016. Crossref

  10. Sebek Jan, Curto Sergio, Bortel Radoslav, Prakash Punit, Analysis of minimally invasive directional antennas for microwave tissue ablation, International Journal of Hyperthermia, 33, 1, 2017. Crossref

  11. Sebek Jan, Albin Nathan, Bortel Radoslav, Natarajan Bala, Prakash Punit, Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning, Medical Physics, 43, 5, 2016. Crossref

  12. Martin N.A., Falder S., A review of the evidence for threshold of burn injury, Burns, 43, 8, 2017. Crossref

  13. van Veldhuisen Eran, Vogel J. A., Klaessens J. H., Verdaasdonk R. M., Thermal Effects of Irreversible Electroporation, in Irreversible Electroporation in Clinical Practice, 2018. Crossref

  14. Schwenke Michael, Georgii Joachim, Preusser Tobias, Fast Numerical Simulation of Focused Ultrasound Treatments During Respiratory Motion With Discontinuous Motion Boundaries, IEEE Transactions on Biomedical Engineering, 64, 7, 2017. Crossref

  15. Dimitri Mattia, Staderini Fabio, Brancadoro Margherita, Frosini Francesco, Coratti Andrea, Capineri Lorenzo, Corvi Andrea, Cianchi Fabio, Biffi Gentili Guido, A new microwave applicator for laparoscopic and robotic liver resection, International Journal of Hyperthermia, 36, 1, 2019. Crossref

  16. Pearce John, Irreversible Tissue Thermal Alterations: Skin Burns, Thermal Damage and Cell Death, in Theory and Applications of Heat Transfer in Humans, 2018. Crossref

  17. Eyerly-Webb Stephanie A., Vejdani-Jahromi Maryam, Kakkad Vaibhav, Hollender Peter, Bradway David, Trahey Gregg, Acoustic Radiation Force-based Ultrasound Elastography for Cardiac Imaging Applications, in Ultrasound Elastography for Biomedical Applications and Medicine, 2018. Crossref

  18. Zhao Jinzhe, Zhao Qi, Jiang Yingxu, Li Weitao, Yang Yamin, Qian Zhiyu, Liu Jia, Feasibility study of modeling liver thermal damage using minimally invasive optical method adequate for in situ measurement, Journal of Biophotonics, 11, 6, 2018. Crossref

  19. Linte Cristian A., Camp Jon J., Holmes David R., Rettmann Maryam E., Robb Richard A., Toward Online Modeling for Lesion Visualization and Monitoring in Cardiac Ablation Therapy, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013, 8149, 2013. Crossref

  20. Sebek Jan, Bortel Radoslav, Prakash Punit, Broadband lung dielectric properties over the ablative temperature range: Experimental measurements and parametric models, Medical Physics, 46, 10, 2019. Crossref

  21. Fallahi Hojjatollah, Clausing Daniel, Shahzad Atif, O’Halloran Martin, Dennedy M Conall, Prakash Punit, Microwave antennas for thermal ablation of benign adrenal adenomas, Biomedical Physics & Engineering Express, 5, 2, 2019. Crossref

  22. Yap Shelley, Cheong Jason K.K., Foo Ji J., Ooi Ean T., Ooi Ean H., The effects of the no-touch gap on the no-touch bipolar radiofrequency ablation treatment of liver cancer: A numerical study using a two compartment model, Applied Mathematical Modelling, 78, 2020. Crossref

  23. O’Neill David P., Peng Tingying, Stiegler Philipp, Mayrhauser Ursula, Koestenbauer Sonja, Tscheliessnigg Karlheinz, Payne Stephen J., A Three-State Mathematical Model of Hyperthermic Cell Death, Annals of Biomedical Engineering, 39, 1, 2011. Crossref

  24. Saeed Maryam, Swaroop Mamta, Yanagawa Franz S., Buono Anita, Stawicki Stanislaw P., Avoiding Fire in the Operating Suite: An Intersection of Prevention and Common Sense, in Vignettes in Patient Safety - Volume 3, 2018. Crossref

  25. Fankell D. P., Regueiro R. A., Kramer E. A., Ferguson V. L., Rentschler M. E., A Small Deformation Thermoporomechanics Finite Element Model and Its Application to Arterial Tissue Fusion, Journal of Biomechanical Engineering, 140, 3, 2018. Crossref

  26. Cheong Jason K.K., Yap Shelley, Ooi Ean T., Ooi Ean H., A computational model to investigate the influence of electrode lengths on the single probe bipolar radiofrequency ablation of the liver, Computer Methods and Programs in Biomedicine, 176, 2019. Crossref

  27. Ooi Ean H., Lee Khiy W., Yap Shelley, Khattab Mahmoud A., Liao Iman Y., Ooi Ean T., Foo Ji J., Nair Shalini R., Mohd Ali Ahmad F., The effects of electrical and thermal boundary condition on the simulation of radiofrequency ablation of liver cancer for tumours located near to the liver boundary, Computers in Biology and Medicine, 106, 2019. Crossref

  28. Jiang Ning, Zhang Liming, Hao Yingtao, Wu Xiaolin, Zhao Yunpeng, Cong Bo, Peng Chuanliang, Combination of electromagnetic navigation bronchoscopy‐guided microwave ablation and thoracoscopic resection: An alternative for treatment of multiple pulmonary nodules, Thoracic Cancer, 11, 6, 2020. Crossref

  29. Almekkawy Mohamed, Zderic Vesna, Chen Jie, Ellis Michael D., Haemmerich Dieter, Holmes David R., Linte Cristian A., Panescu Dorin, Pearce John, Prakash Punit, Therapeutic Systems and Technologies: State-of-the-Art Applications, Opportunities, and Challenges, IEEE Reviews in Biomedical Engineering, 13, 2020. Crossref

  30. Faridi Pegah, Keselman Paul, Fallahi Hojjatollah, Prakash Punit, Experimental assessment of microwave ablation computational modeling with MR thermometry, Medical Physics, 47, 9, 2020. Crossref

  31. Gorgun Ahmet Rifat, Comlekci Selcuk, Kaya Adnan, Single Slot Coaxial Antenna and NiTi (Nickel Titanium) Loop Antenna Design for ISM (Industrial Scientific Medical) Band Microwave Ablation System, 2019 Medical Technologies Congress (TIPTEKNO), 2019. Crossref

  32. - Thermal Dose Models: Irreversible Alterations in Tissues, in Physics of Thermal Therapy, 2016. Crossref

  33. Lopez Jorge I., Bermeo IEEE-EMBS Member Leonardo A., Parametric study of thermal damage in the hyperthermia treatment by radiofrequency, 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), 2021. Crossref

  34. De Tommasi Francesca, Massaroni Carlo, Grasso Rosario Francesco, Carassiti Massimiliano, Schena Emiliano, Temperature Monitoring in Hyperthermia Treatments of Bone Tumors: State-of-the-Art and Future Challenges, Sensors, 21, 16, 2021. Crossref

  35. Polychronopoulos Nickolas D., Gkountas Apostolos A., Sarris Ioannis E., Spyrou Leonidas A., A Computational Study on Magnetic Nanoparticles Hyperthermia of Ellipsoidal Tumors, Applied Sciences, 11, 20, 2021. Crossref

  36. Yamazaki Shota, Ueno Yuya, Hosoki Ryosuke, Saito Takanori, Idehara Toshitaka, Yamaguchi Yuusuke, Otani Chiko, Ogawa Yuichi, Harata Masahiko, Hoshina Hiromichi, Garini Yuval, THz irradiation inhibits cell division by affecting actin dynamics, PLOS ONE, 16, 8, 2021. Crossref

  37. Prakash Punit, Microwave ablation, in Principles and Technologies for Electromagnetic Energy Based Therapies, 2022. Crossref

  38. van Rhoon G.C., Franckena M., ten Hagen T.L.M., A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy, Advanced Drug Delivery Reviews, 163-164, 2020. Crossref

  39. Tang Yundong, Su Hang, Flesch Rodolfo C.C., Jin Tao, An optimization method for magnetic hyperthermia considering Nelder-Mead algorithm, Journal of Magnetism and Magnetic Materials, 545, 2022. Crossref

  40. Kho Antony S K, Foo Ji J, Ooi Ean T, Ooi Ean H, Shape-shifting thermal coagulation zone during saline-infused radiofrequency ablation: A computational study on the effects of different infusion location, Computer Methods and Programs in Biomedicine, 184, 2020. Crossref

  41. Orlacchio Rosa, Nikolayev Denys, Le Page Yann, Le Drean Yves, Zhadobov Maxim, Millimeter-Wave Heating In Vitro: Local Microscale Temperature Measurements Correlated to Heat Shock Cellular Response, IEEE Transactions on Biomedical Engineering, 69, 2, 2022. Crossref

  42. Fallahi Hojjatollah, Prakash Punit, Design of a Microwave Global Endometrial Ablation Device, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3, 2, 2019. Crossref

  43. Huang Hangming, Zhang Lifeng, Moser Michael A.J., Zhang Wenjun, Zhang Bing, A review of antenna designs for percutaneous microwave ablation, Physica Medica, 84, 2021. Crossref

  44. Sebek Jan, Taeprasartsit Pinyo, Wibowo Henky, Beard Warren L., Bortel Radoslav, Prakash Punit, Microwave ablation of lung tumors: A probabilistic approach for simulation‐based treatment planning, Medical Physics, 48, 7, 2021. Crossref

  45. Sebek Jan, Shrestha Tej B., Basel Matthew T., Chamani Faraz, Zeinali Nooshin, Mali Ivina, Payne Macy, Timmerman Sarah A., Faridi Pegah, Pyle Marla, O’Halloran Martin, Dennedy M. Conall, Bossmann Stefan H., Prakash Punit, System for delivering microwave ablation to subcutaneous tumors in small-animals under high-field MRI thermometry guidance, International Journal of Hyperthermia, 39, 1, 2022. Crossref

  46. Dantas Eber, Orlande Helcio R. B., Dulikravich George S., Thermal ablation effects on rotors that characterize functional re‐entry cardiac arrhythmia, International Journal for Numerical Methods in Biomedical Engineering, 38, 8, 2022. Crossref

  47. De Vita Elena, De Tommasi Francesca, Altomare Carlo, Ialongo Sofia, Massaroni Carlo, Presti Daniela Lo, Faiella Eliodoro, Andresciani Flavio, Pacella Giuseppina, Palermo Andrea, Carassiti Massimiliano, Iadicicco Agostino, Grasso Rosario Francesco, Schena Emiliano, Campopiano Stefania, Fiber Bragg Gratings for Temperature Monitoring during Thyroid Microwave Ablation: a Preliminary Analysis, 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2022. Crossref

  48. Sebek Jan, Cappiello Grazia, Rahmani George, Zeinali Nooshin, Keating Muireann, Fayemiwo Michael, Harkin Jim, McDaid Liam, Gardiner Bryan, Sheppard Declan, Senanayake Russell, Gurnell Mark, O’Halloran Martin, Dennedy M. Conall, Prakash Punit, Image-based computer modeling assessment of microwave ablation for treatment of adrenal tumors, International Journal of Hyperthermia, 39, 1, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain