图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
生物医学工程评论综述™
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 打印: 0278-940X
ISSN 在线: 1943-619X

生物医学工程评论综述™

DOI: 10.1615/CritRevBiomedEng.v33.i1.10
pages 1-102

FUNCTIONAL ANGIOGRAPHY

Baruch B. Lieber
Department of Biomedical Engineering, College of Engineering; Department of Radiology, School of Medicine, University of Miami, Miami, Florida, USA
Chander Sadasivan
Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida, USA
Matthew J. Gounis
Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida, USA
Jaehoon Seong
Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida, USA
Laszlo Miskolczi
Department of Radiology, School of Medicine, University of Miami, Miami, Florida, USA
Ajay K. Wakhloo
Department of Biomedical Engineering, College of Engineering; Department of Radiology, School of Medicine; Department of Neurological Surgery, School of Medicine, University of Miami, Miami, Florida, USA

ABSTRACT

The discovery of X-rays over a century ago enabled noninvasive examination of the human body. Contrast agents that enhanced X-ray images were soon developed that advanced angiology by allowing exploration of the vascular tree. Starting as a diagnostic tool, angiography underwent technological transformations over the last century and became a basis for interventional therapy as well. Initially a static two-dimensional record of the vasculature on screen films, angiography has evolved to real-time two-dimensional display of the vasculature on television monitors, three-dimensional reconstruction from computerized tomographic (CT) scans, and, more recently, three-dimensional cone-beam reconstruction. Cinematographic angiography is referred to as dynamic angiography in current terminology, but it essentially provides no more than images of vascular structures and changes therein.
Although dynamic angiography has facilitated advances in image-guided interventions, the evaluation of blood flow rate, or perfusion, and blood flow velocity using angiography remains elusive. Many lines of research have been pursued toward enabling such evaluations, but none have found their way into clinical practice. This article reviews angiographic flow assessment methods attempted over the past several decades and explores some new avenues that may facilitate the transfer of such methods into the clinical practice of diagnostic and interventional angiography and, eventually, contribute to better patient care.


Articles with similar content:

Monitoring Brain Oxygenation in Head-Injury Patients
Critical Reviews™ in Biomedical Engineering, Vol.37, 2009, issue 1-2
Justin Paul Phillips
Vibration Arthrometry: A Critical Review
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 3
Michael D Cole, Steven C Abbott
Magnetic Resonance Imaging in Clinical Cardiac Electrophysiology
Critical Reviews™ in Biomedical Engineering, Vol.40, 2012, issue 5
Ravi Ranjan
Dental Tissue−Derived Mesenchymal Stem Cells: Applications in Tissue Engineering
Critical Reviews™ in Biomedical Engineering, Vol.46, 2018, issue 5
Jay R. Dave, Geetanjali B. Tomar
METHODS FOR UNDERSTANDING SHEAR INDUCED THROMBUS GROWTH
TSFP DIGITAL LIBRARY ONLINE, Vol.9, 2015, issue
Josie Carberry, Kris Ryan, Isaac Pinar, Jane Arthur, Elizabeth Gardiner, Rob Andrews