ISSN 打印: 1091-028X
ISSN 在线: 1934-0508

# 多孔介质期刊

DOI: 10.1615/JPorMedia.2019025664
pages 1015-1025

## MASS TRANSPIRATION IN MAGNETO-HYDRODYNAMIC BOUNDARY LAYER FLOW OVER A SUPERLINEAR STRETCHING SHEET EMBEDDED IN POROUS MEDIUM WITH SLIP

P. N. Vinay Kumar
Department of Mathematics, SHDD Government First Grade College, Paduvalahippe, Hassan – 573211, India
U. S. Mahabaleshwar
Department of Mathematics, Davangere University, Shivagangotri, Davangere – 577007, India
K. R. Nagaraju
Department of Mathematics, Government Engineering College, Hassan, India
Civil Research Group, School of Engineering, University of Warwick, Coventry, UK
A. Daneshkhah
School of Computing, Electronics and Mathematics, Coventry University, Coventry, UK

### ABSTRACT

We have studied mass transpiration of a magneto-hydrodynamic (MHD) flow of a Newtonian fluid over a superlinear stretching sheet embedded in a porous medium. A model was created of a nonlinear system of partial differential equations that are transformed into third-order nonlinear ordinary differential equations via similarity transformations and then solved analytically using differential transform method and Pade approximants. The main focus of the present study is on the effect of Navier's slip boundary condition on flow behavior. A comprehensive study is presented on the effects of various parameters, such as Navier's slip condition, mass transpiration (suction/injection), and Darcy number on the axial and transverse velocity profiles of the laminar boundary layer flow through the stretching sheet.

### REFERENCES

1. Ali, M.E., On Thermal Boundary Layer on a Power-Law Stretched Surface with Suction or Injection, Int. J. Heat Fluid Flow, vol. 16, pp. 280-290, 1995.

2. Andersson, H.I., Slip Flow past a Stretching Surface, Acta Mech., vol. 158, pp. 121-125, 2002.

3. Ariel, P.D., Hayat, T., and Asghar, S., The Flow of an Elastic-Viscous Fluid past a Stretching Sheet with Partial Slip, Acta Mech, vol. 187, pp. 29-35, 2006.

4. Baker, G.A. and Morris, P.R.G., Pade Approximants: Basic Theory, New York: Addison-Wesley Publishing Company, 1981.

5. Banks, W.H.H., Similarity Solutions of the Boundary Layer Equations for a Stretching Wall, J. Mech. Theor. Appl., vol. 2, pp. 375-392, 1983.

6. Bervillier, C., Status of the Differential Transformation Method, Appl. Math. Comput, vol. 218, pp. 10158-10170, 2012.

7. Blasius, H., Grenzschichten in Fliissigkeiten mit Kleiner Reibung, Zeits. f. Math. U. Phys., vol. 56, pp. 1-37, 1908.

8. Chaim, T.C., Magnetohydrodynamic Heat Transfer over a Non-Isothermal Stretching Sheet, Acta Mech., vol. 122, pp. 169-179, 1997.

9. Chen, C.K. and Char, M.I., Heat Transfer of a Continuous, Stretching Surface with Suction or Blowing, J. Math. Anal. Appl., vol. 135, pp. 568-580, 1988.

10. Crane, L.J., Flow past a Stretching Plate, Zeits. f. Math. u. Phys., vol. 21, pp. 645-647, 1970.

11. El-Dabe, N.T., Ghaly, A.Y., Rizkallah, R.R., Ewis, K.M., and Al-Bareda, A.S., Numerical Solution of MHD Boundary Layer Flow of Non-Newtonian Casson Fluid on a Moving Wedge with Heat and Mass Transfer and Induced Magnetic Field, J. Appl. Math. Phys, vol. 3, pp. 649-663,2015.

12. Fisher, B.G., Extrusion of Plastics, London: Newnes-Butterworld, 1976.

13. Gad-el-Hak, M., The Fluid Mechanics of Microdevices, ASMEJ. Fluids Eng., vol. 121, pp. 5-33,1999.

14. Gupta, P.S. and Gupta, A.S., Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing, Can. J. Chem. Eng., vol. 55, pp. 744-746, 1977.

15. Hamad, M.A.A., Analytical Solution of Natural Convection Flow of a Nanofluid over a Linearly Stretching Sheet in the Presence of Magnetic Field, Int. Commun. Heat Mass Transf., vol. 38, pp. 487-492, 2011.

16. Ingham, D.B. and Pop, I., Transport in Porous Media, Oxford: Pergamon, 2002.

17. Kaviany, M., Principles ofHeat Transfer in Porous Media, New York: Springer, 1991.

18. Kumar Ranjith, S., Patnaik, B.S.V., and Vedanta, S., No-Slip Boundary Condition in Finite-Size Dissipative Particle Dynamics, J. Comput. Phys, vol. 232, no. 1, pp. 174-188, 2013.

19. Magyari, E. and Keller, B., Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface, J Phys. D: Appl. Phys.., vol. 32, pp. 577-585, 1999.

20. Mahabaleshwar, U.S., Effect of Partial Slip Viscous Flow over a Stretching Sheet with Suction/Injection in a Porous Medium, in Porous Media, New York: NOVA Science Publishers, pp. 165-179,2016.

21. Mahabaleshwar, U.S., Nagaraju, K.R., Vinay Kumar, P.N., Baleanu, D., and Lorenzini, G., An Exact Analytical Solution of the Unsteady Magnetohydrodynamics Nonlinear Dynamics of Laminar Boundary Layer due to an Impulsively Linear Stretching Sheet, Continuum Mech. Therm., vol. 29, no. 2, pp. 559-567, 2017.

22. Navier, C.L.M.H., Memoiresur les Lois du Mouvement des Fluids, Mem. Acad. R. Sci. Inst. France, vol. 6, pp. 389-440, 1823.

23. Nield, D.A. and Bejan, A., Convection in Porous Media, 4th Edition, New York: Springer, 2013.

24. Pavlov, K.B., Magnetohydrodynamic Flow of an Incompressible Viscous Liquid Caused by Deformation of Plane Surface, Magnitnaya Gidrodinamica, vol. 4, pp. 146-147, 1974.

25. Pop, I. and Cheng, P., Flow past a Circular Cylinder Embedded in a Porous Medium based on the Brinkman Model, Int. J. Eng. Sci, vol. 30, pp. 257-262, 1992.

26. Pop, I. and Ingham, D.B., Flow past a Sphere Embedded in a Porous Medium based on the Brinkman Model, Int. Commun. Heat Mass Transf., vol. 23, pp. 865-874, 1996.

27. Rashidi, M.M., Differential Transform Method for MHD Boundary-Layer Equations: Combination of the DTM and the Pade Approximant, Int. Conf. on Signal Processing Systems, Singapore, 2009.

28. Sakiadis, B.C., Boundary Layer Behaviour on Continuous Solid Surfaces: I. Boundary Layer Equations for Two Dimensional and Axisymmetric Flow, AIChE J., vol. 7, pp. 26-28, 1961a.

29. Sakiadis, B.C., Boundary Layer Behaviour on Continuous Solid Surfaces: II. Boundary Layer Behaviour on Continuous Flat Surfaces, AIChE J., vol. 7, pp. 221-225, 1961b.

30. Siddheshwar, P.G., Chan, A., and Mahabaleshwar, U.S., Suction-Induced Magnetohydrodynamics of a Viscoelastic Fluid over a Stretching Surface within a Porous Medium, IMA J. Appl. Math., vol. 79, no. 3, pp. 445-458, 2014.

31. Turkyilmazoglu, M., Effects of Partial Slip on the Analytic Heat and Mass Transfer for the Incompressible Viscous Fluid of a Porous Rotating Disk Flow, J. Heat Transf., vol. 133, pp. 122602-122605, 2011a.

32. Turkyilmazoglu, M., Multiple Solutions of Heat and Mass Transfer of MHD Slip Flow for the Viscoelastic Fluid over a Stretching Sheet, Int. J. Therm. Sci., vol. 50,no. 11, pp. 2264-2276, 2011b.

33. Urquiza, J.M., Garon, A., and Farinas, M.I., Weak Imposition of the Slip Boundary Condition on Curved Boundaries for Stokes Flow, J. Comput. Phys, vol. 256, pp. 748-767,2014.

34. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 24, pp. 195-203, 1981.

35. Verhaeghe, F., Luo, L., and Blanpain, B., Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Regime, J. Comput. Phys, vol. 228, no. 1, pp. 147-157, 2009.

36. Wang, C.Y., Flow due to a Stretching Boundary with Partial Slip - An Exact Solution oftheNavier-Stokes Equations, Chem. Eng. Sci., vol. 57, no. 17, pp. 3745-3747, 2002.

37. Wang, C.Y., Darcy-Brinkman Flow with Solid Inclusions, Chem. Eng. Commun, vol. 197, pp. 261-274, 2010.

38. Zhou, J.K., Differential Transformation and its Application for Electrical Circuits, China: Huazhong University Press, 1986.

### Articles with similar content:

THEMODIFFUSION EFFECTS ON MHD BOUNDARY LAYER SLIP FLOW OF NANOFLUID OVER A NONLINEAR STRETCHING SHEET THROUGH A POROUS MEDIUM
Journal of Porous Media, Vol.20, 2017, issue 11
R.V.M.S.S. Kiran Kumar, S. Vijaya Kumar Varma, P. Durga Prasad, V. Nagendramma, A. Leelaratnam
ANALYTICAL APPROACH TO STAGNATION-POINT FLOW AND HEAT TRANSFER OF A MICROPOLAR FLUID VIA A PERMEABLE SHRINKING SHEET WITH SLIP AND CONVECTIVE BOUNDARY CONDITIONS
Heat Transfer Research, Vol.50, 2019, issue 8
Khilap Singh, Manoj Kumar, Alok Kumar Pandey
STUDY OF PARTIAL SLIP MECHANISM ON FREE CONVECTION FLOW OF VISCOELASTIC FLUID PAST A NONLINEARLY STRETCHING SURFACE
Computational Thermal Sciences: An International Journal, Vol.11, 2019, issue 1-2
A. Bhattacharyya, Manoj Kumar Mishra, Gauri Shanker Seth
UNSTEADY BOUNDARY LAYER FLOW OVER A PERMEABLE CURVED STRETCHING/SHRINKING SURFACE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Ioan Pop, Roslinda Nazar, Fadzilah Md. Ali, Norfifah Bachok, Siti Suzilliana Putri Mohd Isa, Norihan Md. Arifin
SUCTION AND BLOWING EFFECTS ON UNSTEADY FLOW AND HEAT TRANSFER THROUGH POROUS MEDIA WITH VARIABLE VISCOSITY
Journal of Porous Media, Vol.15, 2012, issue 3
Asif Ali, Saira Husnain, Ahmer Mehmood, O. Anwar Bég