图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

传热学

DOI: 10.1615/HeatTransRes.2018019485
pages 159-181

CONTROL OF HEAT TRANSFER AND FLUID FLOW VIA A MOVING FIN IN A TRIANGULAR ENCLOSURE FILLED WITH NANOFLUID

Lioua Kolsi
College of Engineering, Mechanical Engineering Department, Haïl University, Haïl City, Saudi Arabia; Unité de Métrologie et des Systèmes Energétiques, Ecole Nationale d'Ingénieurs, 5000 Monastir, University of Monastir, Tunisia
Hakan F. Öztop
Department of Mechanical Engineering, Technology Faculty, Firat University, Elazig, Turkey; Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 40844, Jeddah 21511, Saudi Arabia
Abdullah A. A. A. Al-Rashed
Department of Automotive and Marine Engineering Technology, College of Technological Studies, Public Authority for Applied Education and Training, Kuwait
Abdelkarim Aydi
Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, P.O. Box 1321, Arar, Saudi Arabia
Borjini Mohamed Naceur
Unité de Métrologie et des Systèmes Energétiques, Ecole Nationale d'Ingénieurs, 5000 Monastir, University of Monastir, Tunisia
Nidal Abu-Hamdeh
Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 40844, Jeddah 21511, Saudi Arabia

ABSTRACT

A computational study has been performed to solve the heat transfer and fluid flow problem in a triangular enclosure filled with nanofluids. It also has a moving fin in its top side. Three different cases are considered: a fixed fin (V = 0), a fin rotating clockwise (V+), and a fin rotating counterclockwise (V–). The cavity is heated and cooled from inclined walls and its bottom wall is adiabatic. Three-dimensional governing equations are solved by using the finite volume method. Other governing parameters are the Rayleigh number 103 ≤ Ra ≤ 106 and nanoparticle volume fraction 0.0 ≤ φ ≤ 0.15. It is found that heat transfer can be controlled via both a moving lid and particle addition into the base fluid.


Articles with similar content:

Magnetohydrodynamic Free Convection Heat Transfer in a Square Enclosure heated from side and cooled from the ceiling
Computational Thermal Sciences: An International Journal, Vol.3, 2011, issue 3
Zeynab Talea'pour, Mostafa Mahmoodi
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum
Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall
Heat Transfer Research, Vol.42, 2011, issue 3
Saeid Jani, Mostafa Mahmoodi, Meysam Amini
MIXED CONVECTION HEAT TRANSFER FLOW OF AIR INSIDE A SINUSOIDAL CORRUGATED CAVITY WITH A HEAT-CONDUCTING HORIZONTAL CIRCULAR CYLINDER
Journal of Enhanced Heat Transfer, Vol.18, 2011, issue 5
Salam Hadi Hussain, Qusay Rashid Abd-Amer
INFLUENCES OF ADIABATIC BLOCK, NANOFLUID AND MAGNETIC FIELD ON THERMAL ENERGY TRANSPORT IN CAVITY
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Nirmal Kumar Manna, Nirmalendu Biswas