图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

传热学

DOI: 10.1615/HeatTransRes.2018020029
pages 827-845

PREDICTION OF SELF-IGNITION FIRE PROPAGATION AND COAL LOSS IN AN INCLINED SEAM

Yanming Wang
School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China; Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
Xueqin Li
School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
Zhixiong Guo
Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

ABSTRACT

The thermochemical processes of spontaneous combustion of coal in an inclined outcrop seam were investigated in order to understand the underground mineral self-ignition, fire propagation, and the loss of reserves. A heat and mass transfer model of porous coal-bearing stratum was employed, combining convection and radiation with a transient exothermic source which is coupled with coal oxidation, oxygen supply, and fuel consumption. It is found that spontaneous combustion firstly occurs under lean oxygen condition. Fire development controlled by the reaction heat release in the early oxidation process shifts to oxygen restriction after coal self-ignition. The stratum porosity significantly affects the fire propagation. The fire propagation rate slightly increases as the inclined angle decreases. Compared with indirect surface survey, the predicted loss of reverses is more reasonable; thus, the present model could provide a useful reference to loss estimation in coal fire hazards.


Articles with similar content:

COUPLED MULTI-STAGE OXIDATION AND THERMODYNAMIC PROCESS IN COAL-BEARING STRATA UNDER SPONTANEOUS COMBUSTION CONDITION
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Zhixiong Guo, Yanming Wang, Guoqing Shi
Soot production in a turbulent methane-air flame accounting for both gas and particulate radiation
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Diego Lentini, F. Rispoli, P. Venturini, C. M. Mazzoni
TYPE CURVES FOR PRODUCTION ANALYSIS OF NATURALLY FRACTURED SHALE GAS RESERVOIRS WITH STRESS-SENSITIVE EFFECT
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 2
Shijun Huang, Linsong Cheng, Shuang Ai, Bailu Teng, Hongjun Liu, Zheng Jia
CFD SIMULATION OF EXHAUST REFORMING CHARACTERISTICS IN CATALYTIC FIXED BED REACTORS FOR A NATURAL GAS ENGINE
International Heat Transfer Conference 16, Vol.6, 2018, issue
Pengpeng Jia, Gesheng Li, Shangsheng Feng, Junjie Liang, Zunhua Zhang
PREDICTION OF GAS-PARTICLE FLOWS AND GAS COMBUSTION IN A CYCLONE FURNACE
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Cheong-ki Chan, Yin-cheng Guo