图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.2013005903
pages 447-454

EFFECT OF TEMPERATURE ON THE CRATER-LIKE ELECTROSPINNING PROCESS

Yong Liu
Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Wei Liang
School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Wan Shou
School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Ying Su
School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Rui Wang
Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China

ABSTRACT

Most solution electrospinning processes were performed at the ambient temperature. Few hot polymer solutions were used to produce electrospun nanofibers in the traditional electrospinning process, much less in electrospinning processes with a free liquid surface. In this presentation, poly(vinyl alcohol) solutions with different temperatures (20, 35, 50, and 65°C) were employed to fabricate nanofibers in a crater-like electrospinning process. All other electrospinning parameters, such as applied voltage, air pressure, and collective distance, were kept constant. The influence of solution temperature on the electrospinnability of solutions and the quality of prepared nanofibers were assessed. The results showed that the solution temperature exerted an appreciable influence on the viscosity of polymer solution, which in turn influenced the process of prediction of nanofibers and their quality. With increase in the solution temperature, the critical applied voltage and air pressure decreased. An ideal temperature is about 50°C for the production of nanofibers in these experiments. But a higher solution temperature caused a rapid evaporation of solvent in the solution, which caused aggravation of the solution electrospinnability.


Articles with similar content:

ATOMIZATION OF HIGHLY VISCOUS LIQUIDS BY A SPINNING DISK
Atomization and Sprays, Vol.2, 1992, issue 1
Teruo Takahashi, Yoshiro Kitamura
RHEOLOGICAL BEHAVIOR OF NANOSILICA SUSPENSIONS AND THE POTENTIAL TO ENHANCE POLYMER FLOODING PERFORMANCE
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 4
Nasim Barati, Mohammad Zargartalebi, Riyaz Kharrat
MECHANICAL PROPERTIES AND DIFFUSION BEHAVIOR OF CARBON FIBER-REINFORCED PEEK ON EXPOSURE TO HEAT AND WATER
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 4
Mohamed El Amine Belouchrani, Toufik Saoudi
STRUCTURE AND PROPERTIES OF ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE FILLED WITH TUNGSTEN BORIDE AND CARBON BLACK
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 2
Victor V. Tcherdyntsev, A. A. Boykov, V. N. Gulbin
Effect of the Vapor Flow on the Drop Spreading in the Leidenfrost Regime
International Heat Transfer Conference 15, Vol.28, 2014, issue
Guillaume Castanet, Alexandre Labergue, Michel GRADECK, Fabrice Lemoine, Ophelie Caballina