图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

传热学

DOI: 10.1615/HeatTransRes.v42.i2.40
pages 143-164

Influence of Internal Cyclone Flow on Adiabatic Film Cooling Effectiveness

Andreas Lerch
Institute of Gas Turbines and Aerospace Propulsion, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Heinz-Peter Schiffer
Institute of Gas Turbines and Aerospace Propulsion, Technische Universität Darmstadt, 64287 Darmstadt, Germany

ABSTRACT

The adiabatic film cooling effectiveness on the surface of a symmetrical blade model was measured for eight cylindrical, 59° inclined cooling holes. The holes were fed with different flow types using a cylindrical leading-edge channel. Two configurations were compared: on the one hand, a leading-edge channel flow without swirl (datum configuration), using a sharp-edged inlet; on the other hand, a new cyclone cooling configuration with a positive swirl. The experiments were carried out using the calibrated ammonia diazo technique. The blowing ratios were varied between 0.6 and 1.2, and the film cooling discharge was set to either 20% or 50%. For all these operation points, multiple experiments were conducted and combined using a weighting average method to produce a high full-range resolution. The lateral and area-averaged adiabatic effectiveness is presented up to 45D downstream of the cooling holes. The measurements show a higher area-averaged effectiveness immediately downstream of the cooling holes when using the cyclone cooling configuration. This is due to nonsymmetric flow structures inside the cooling holes. Further downstream, however, it decreases faster. With a low film cooling discharge and rising blowing ratios, these effects are more pronounced.


Articles with similar content:

INFLUENCE OF INTERNAL CYCLONE FLOW ON ADIABATIC FILM COOLING EFFECTIVENESS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Heinz-Peter Schiffer, Andreas Lerch
Effect of Swirled Leakage Flow on Endwall Film-Cooling
International Heat Transfer Conference 15, Vol.20, 2014, issue
Terrence W. Simon, Shu Fujimoto, Richard J. Goldstein, Chiyuki Nakamata, Matthew Stinson
Experimental and Computational Film Cooling with Backward Injection for Cylindrical and Fan-Shaped Holes
International Heat Transfer Conference 15, Vol.20, 2014, issue
Shiou-Jiuan Li, Je-Chin Han, Wei-Hsiang Wang, Andrew F Chen
EFFECT OF ANTI-VORTEX HOLE ANGLE ON THE FILM COOLING EFFECTIVENESS
Heat Transfer Research, Vol.48, 2017, issue 6
Jae Su Kwak, Younggi Moon, Soon Sang Park, Jung Shin Park
FILM COOLING EFFECT OF THE LEAKAGE THROUGH THE SEAM OF ADJACENT TURBINE BLADE PLATFORMS
International Heat Transfer Conference 13, Vol.0, 2006, issue
M. Y. Jabbari, E. J. Thor, Richard J. Goldstein