图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.2015007386
pages 1101-1121

HEAT TRANSFER ENHANCEMENT OF MHD FLOW BY A ROW OF MAGNETIC OBSTACLES

Xidong Zhang
Academy of Frontier Science, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, Jiangsu 210016, P.R.China
Hulin Huang
College of Astronautics, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

ABSTRACT

The appearance of vortex-shedding phenomena in electrically conducting viscous fluid flow past a magnetic obstacle is similar to the flow behind solid obstacles. This feature can be used for efficient enhancement of the wall-heat transfer, for better mixing of passive scalars or for the flow control of electrically conductive fluid. In the present work, the fluid flow and heat transfer characteristics around a row of magnetic obstacles are investigated numerically. The heat transfer behaviors, flow resistance, and vortex structures of the magnetic obstacles are presented, and the influence of dimensionless parameters, such as Reynolds numbers and interaction parameters, are also discussed. It is shown that the downstream cross-stream mixing induced by the magnetic obstacle wakes can enhance the wall heat transfer, so that the maximum value of percentage heat transfer increment (HI) is equal to about 69.5%. Moreover, the global thermal performance factor is increasingly dependent on the interaction parameter for a constant Reynolds number.