图书馆订阅: Guest
水生生物学期刊

每年出版 6 

ISSN 打印: 0018-8166

ISSN 在线: 1943-5991

SJR: 0.221 SNIP: 0.469 CiteScore™:: 0.9 H-Index: 12

Indexed in

Role of Organic Substances-Exometabolites in Migration and Detoxification of Metals in Surface Waters (a Review)

卷 56, 册 5, 2020, pp. 92-109
DOI: 10.1615/HydrobJ.v56.i5.100
Get accessGet access

摘要

The data on organic substances-exometabolites, including carbohydrates, protein-like compounds, and siderophores are generalized in the paper. It has been shown that these substances are of considerable importance in the total balance of dissolved organic matter and significantly influence aquatic environment quality. They are involved in the process of metal migration and detoxification. Bioavailability of metals depends to a large extent on the molecular mass of complex compounds formed between metal ions and organic substances-exometabolites. Data on the conditional stability constants of metal complex compounds with these substances are given in the paper. It has been shown that they include at least two classes of organic substances, which form complex compounds with metal ions differing in their stability. The role of organic substances-exometabolites in the process of detoxification of heavy metals is discussed in the paper.

参考文献
  1. Gidrologiya i gidrokhimiya Dnepra i yego vodokhranilishch. (Hydrology and hydrochemistry of the Dnieper River and its reservoirs.) 1989. / Ed. by M.A. Shevchenko. Kiev, Naukova Dumka Press. 216 pp. [Rus.].

  2. Linnik, P.M., V.A. Zhezherya & R.P. Linnik. 2019. Study of co-existing forms of chemical elements in natural surface waters is one of the main directions of the development of modern hydrochemistry. Pp. 165-180 in: Problemy Gidrologiyi, Gidrokhimiyi i Gidroekologiyi. (Problems of hydrology, hydrochemistry, and hydroecology.) Kyiv, Nika-Tsentr Press. [Ukr.].

  3. Linnik, P.N., T.A. Vasilchuk, R.P. Linnik & I.I. Ignatenko. 2007. Co-existing forms ofheavy metals in surface waters of Ukraine and the role of organic matter in their migration. Metody i Obyekty Khimicheskogo Analiza 2(2): 130-146. [Rus.].

  4. Linnik, P.N., V.A. Zhezherya & R.P. Linnik. 2009. On some peculiarities of Al(III) complexation with humic substances. Metody i Obyekty Khimicheskogo Analiza 4(1): 73-84. [Rus.].

  5. Linnik, P.N. & B.I. Nabivanets. 1986. Formy migratsii metallov vpresnykh poverkhnostnykh vodakh. (Forms of migration of metals in fresh surface waters.) Leningrad, Gidrometeoizdat Press. 270 pp. [Rus.].

  6. Maystrenko, Yu.G. 1965. Organicheskoye veshchestvo vody i donnykh otlozheniy rek i vodoyemov Ukrainy. (Organic matter of waters and bottom sediments of rivers and water bodies of Ukraine.) Kiev, Naukova Dumka Press. 240 pp. [Rus.].

  7. Osadcha, N.M. 2011. Zakonomirnosti migratsiyi gumusovykh rechovyn u poverkhnevykh vodakh Ukrayiny. (Regularities of humus substances migration in surface waters of Ukraine.) Author's abstract of Doctor Thesis. Kyiv. 32 pp. [Ukr.].

  8. Perminova, I.V. 2000. Analiz, klassifikatsiya iprognoz svoystv gumusovykh kislot. (Analysis, classification, and prediction of the properties of humus acids.) Author's abstract of Doctor Thesis. Moscow. 50 pp. [Rus.].

  9. Rusakova, M.Yu., B.M. Galkin, T.O. Filipova et al. 2014. Production of siderophores by the bacteria of the genus Pseudomonas. Mikrobiologiya i Biotekhnologiya 4: 88-95. [Ukr.].

  10. Seki Khumitake. 1986. Organicheskiye veshchestva v vodnykh ekosistemakh. (Organic matter in aquatic ecosystems.) Leningrad, Gidrometeoizdat Press. 200 pp. [Rus.].

  11. Semenov, A.D. 1971. Organicheskiye veshchestva v poverkhnostnykh vodakh Sovetskogo Soyuza. (Organic substances in surface waters of the Soviet Union.) Author's abstract of Doctor Thesis. Novocherkassk. 41 pp. [Rus.].

  12. Sirenko, L.A. 1972. Fiziologicheskiye osnovy razmnozheniya sinezelenykh vodorosley v vodokhranilishchakh. (Physiological foundations of the reproduction of blue-green algae in reservoirs.) Kiev, Naukova Dumka Press. 204 pp. [Rus.].

  13. Sudyina, Ye.G., Ye.I. Shnyukova, N.V. Kostlan et al. 1978. Biokhimiya sinezelenykh vodorosley. (Biochemistry of blue-green algae.) Kiev, Naukova Dumka Press. 264 pp. [Rus.].

  14. Abualhaija, M.M., H. Whitby & C.M.G. Van den Berg. 2015. Competition between copper and iron for humic ligands in estuarine waters. Mar. Chem. 172: 46-56.

  15. Ahmed, E. & S.J.M. Holmstrom. 2014. Siderophores in environmental research: roles and applications. Microbial Biotechnology 7: 196-208.

  16. Alberts, J.J. 1988. Dissolved carbohydrate distribution and dynamics in two southeastern United States reservoirs. Can. J. Fish. Aquat. Sci. 45: 325-332.

  17. Alberts, J.J. & J.P. Giesy. 1983. Chapter 16. Conditional stability constants of trace metals and naturally occurring humic materials: application in equilibrium models and verification with field data. Pp. 333-348 in: Aquatic and terrestrial humic materials. / Ed. by R.F. Christman & E.T. Gjessing. Ann Arbor Sci. Publishers.

  18. Alekseev, Yu.E., A.D. Garnovskii & Yu.A. Zhdanov. 1998. Complexes of natural carbohy-drates with metal cations. Rus. Chem. Rev. 67(8): 649-669.

  19. Aquatic ecosystems: interactivity of dissolved organic matter. 2003. / Ed. by S.E.G. Findlay & R.L. Sinsabaugh. San Diego, Academic Press. 512 p.

  20. Bellenger, J.P., T. Wichard, A.B. Kustka & A.M.L. Kraepiel. 2008. Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nat. Geosci. 1: 243-246.

  21. Biersmith, A. & R. Benner. 1998. Carbohydrates in phytoplankton and freshly produced dis-solved organic matter. Mar. Chem. 63: 131-144.

  22. Bittar, T.B., A.A.H. Vieira, A. Stubbins & K. Mopper. 2015. Competition between photochem-ical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnol. Oceanogr. 60: 1172-1194.

  23. Boye, M. & C.M.G. Van den Berg. 2000. Iron availability and the release of iron-complexing ligands by Emiliania huxleyi. Mar. Chem. 70: 277-287.

  24. Breault, R.F., J.A. Colman, G.R. Aiken & D. McKnight. 1996. Copper speciation and binding by organic matter in copper-contaminated stream water. Environ. Sci. Technol. 30: 3477-3486.

  25. Chen, Y., E. Jurkewitch, E. Bar-Ness & Y. Hadar. 1994. Stability constants of pseudobactin complexes with transition metals. Soil Sci. Soc. Am. J. 58: 390-396.

  26. Choueri, R.B., P.K. Gusso-Choueri, M.G.G. Melao et al. 2009. The influence of cyano-bacterium exudates on copper uptake and toxicity to a tropical freshwater cladoceran. J. Plankton Res. 31(10): 1225-1233.

  27. Chrost, R.J., U. Munster, H. Rai et al. 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11(2): 223-242.

  28. Comte, S., G. Guibaud & M. Baudu. 2006. Relations between extraction protocols for activated sludge extracellular polymericic substances (EPS) and complexation properties of Pb and Cd with EPS. Part II. Consequences of EPS extraction methods on Pb2+ and Cd2+ complexation. Enz. Microb. Technol. 38(1-2): 246-252.

  29. Croot, P.L., J.W. Moffett & L.E. Brand. 2000. Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnol. Oceanogr. 45(3): 619-627.

  30. Decho, A.W. 2000. Microbial biofilms in intertidal systems: an overview. Continental Shelf Research 20: 1257-1273.

  31. Dinu, M.I. 2015. Interaction between metal ions in waters with humic acids in gley-podzolic soils. Geochemistry International 53(3): 265-276.

  32. Ellwood, M.J. & C.M.G. Van den Berg. 2000. Zinc speciation in the Northeastern Atlantic Ocean. Mar. Chem. 68: 295-306.

  33. Fish, W. & F.M.M. Morel. 1983. Characterization of organic copper-complexing agents by Daphnia magna. Can. J. Fish. Aquat. Sci. 40(8): 1270-1277.

  34. Fu, P.Q., F.C. Wu, C.Q. Liu et al. 2007. Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). Appl. Geochem. 22: 1668-1679.

  35. Geesey, G.G. & L. Jang. 1989. Interactions between metal ions and capsular polymerics. Pp. 325-357 in: Metal ions and bacteria. /Ed. T.J. Beveridge & R.J. Doyle. New York, Wiley press.

  36. Giroldo, D. & A.A.H. Vieira. 2005. Polymericic and free sugars released by three phyto planktonic species from a freshwater tropical eutrophic reservoir. J. Plankton Res. 27(7): 695-705.

  37. Gledhill, M. & K.N. Buck. 2012. The organic complexation of iron in the marine environment: a review. Marine Science Faculty Publications 3(69): 1-17.

  38. Gonzalez-Davila, M. 1995. The role of phytoplankton cells on the control ofheavymetal concentration in seawater. Mar. Chem. 48: 215-236.

  39. Gonzalez-Davila, M., J.M. Santana-Casiano, J. Perez-Pefia & F.J. Millero. 1995. Binding of Cu(II) to the surface and exudates of the alga Dunalieila tertiolecta in seawater. Environ. Sci. Technol. 29(2): 289-301.

  40. Gouvea, S.P., A.A.H. Vieira & A.T. Lombardi. 2005. Copper and cadmium complexation by high molecular weight materials of dominant microalgae and of water from a eutrophic reservoir. Chemosphere 60: 1332-1339.

  41. Gueguen, C., L. Guo, D. Wang et al. 2006. Chemical characteristic and origin of dissolved organic matter in the Yukon River. Biogeochem. 77: 139-155.

  42. Gyurcsik, B. & L. Nagy. 2000. Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coord. Chem. Rev. 203(1): 81-149.

  43. Hartinger, C.G., A.A. Nazarov, S.M. Ashraf et al. 2008. Carbohydrate-metal complexes and their potential as anticancer agents. Curr. Med. Chem. 15(25): 2574-2591.

  44. Jiao, Y., G.D. Cody, A.K. Harding et al. 2010. Characterization of extracellular polymericic substances from acidophilic microbial biofilms. Appl. Environ. Microbiology 76(9): 2916-2922.

  45. Kaplan, D., D. Christiaen & S. Arad. 1987. Chelating properties of extracellular polysaccharides from Chlorella sp. Appl. Environ. Microbiology 53(12): 2953-2956.

  46. Kaplan, D., Ya.M. Heimer, A. Abeliovich & P.B. Goldsbrough. 1995. Cadmium toxicity and resistance in Chlorella sp. Plant Sci. 109: 129-137.

  47. Khodse, V.B., N.B. Bhosle & S.G.P Matondkar. 2010. Distribution of dissolved carbohydrates and uronic acids in a tropical estuary, India. J. Earth Syst. Sci. 119(4): 519-530.

  48. Kraemer, S.M., A. Butler, P. Borer J. Cervini-Silva. 2005. Siderophores and the dissolution of iron-bearing minerals in marine systems. Reviews in Mineralogy and Geochemistry 59: 53-84.

  49. Linnik, P.N. & Ya.S. Ivanechko. 2014. Dissolved carbohydrates in the surface water bodies of Ukraine. Hydrobiol. J.50(6): 87-107.

  50. Linnik, P.N. & Ya.S. Ivanechko. 2015. Dissolved protein-like substances in surface water bodies of various types. Hydrobiol. J.51(2): 85-104.

  51. Linnik, P.N., Ya.S. Ivanechko, R.P. Linnik & V.A. Zhezherya. 2013. Humic substances in surface waters of the Ukraine. Rus. J. Gen. Chem. 83(13): 2715-2730.

  52. Linnik, P.N. & T.A. Vasilchuk. 2005. Role of humic substances in the complexation and detox-ification of heavy metals: case study of the Dnieper reservoirs. Use of humic substances to remediate polluted environments: from theory to practice. / Ed. by I.V. Perminova, K. Hatfield &N. Hertkorn. NATO Sci. Ser. IV: Earth and Environ. Ser. 52: 135-154. Dordrecht, Springer.

  53. Linnik, P.N., T.A. Vasilchuk & R.P. Linnik. 2004. Humic substances of natural waters and their importance for aquatic ecosystems: a review. Hydrobiol. J. 40(3): 79-101.

  54. Linnik, P.N., V.A. Zhezherya & R.P. Linnik. 2017. Role of neutral fraction of dissolved organic matter in the migration of metals in surface waters: II.1 Neutral metal complexes in water bodies of different types. Rus. J. Gen. Chem. 87(13): 3233-3243.

  55. Liu, J., D. Zhang, X.-L. Pan & L.Wang. 2009. Characterization of the complexation between Al3+ and extracellular polymericic substances prepared from alga-bacteria biofilm. Chin. J. Appl. Environ. Biol. 15(3): 347-350.

  56. Loaec, M., R. Olier & J. Guezennec. 1997. Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Wat. Res. 31(5): 1171-1179.

  57. Lombardi, A.T., T.M.R. Hidalgo & A.A.H. Vieira. 2005. Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere 60(4): 453-459.

  58. Lorenzo, J.I., M. Nieto-Cid, X.A. Alvarez-Salgado et al. 2007. Contrasting complexing capacity of dissolved organic matter produced during the onset, development and decay of a simulated bloom of the marine diatom. Mar. Chem. 103: 61-75.

  59. Makharadze, G., N. Goliadze, T. Makharadze & G. Supatashvili. 2014. The determination of average stability constant of nickel-FA complex at pH = 8.0 by the solubility method. J. Chem. Chem. Eng. 8: 344-348.

  60. Mclntyre, A.M. & C. Gueguen. 2013. Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere 90: 620-626.

  61. McKnight, D.M. & F.M.M. Morel. 1979. Release of weak and strong copper-complexing agents by algae. Limnol. Oceanogr. 24(5): 823-837.

  62. McKnight, D.M. & F.M.M. Morel. 1980. Copper complexation by siderophores from filamentous blue-green algae. Limnol. Oceanogr. 25(1): 62-71.

  63. Moffett, J.W. & L.E. Brand. 1996. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnol. Oceanogr. 41(3): 388-395.

  64. Moore, J.W. & S. Ramamoorthy. 1984. Heavy metals in natural waters: Applied monitoring and impact assessment. New York, Springer-Verlag. 268 pp.

  65. Mostofa, K.M.G., C.-Q. Liu, X. Feng et al. 2013. Complexation of dissolved organic matter with trace metal ions in natural waters. Pp. 769-849 in: Photobiogeochemistry of Organic Matter. Environmental Science and Engineering. / Ed. by K.M.G. Mostofa, T. Yoshioka, A. Mottaleb & D. Vione. Berlin, Heidelberg, Springer-Verlag.

  66. Muller, F.L.L., S.B. Gulin & A. Kalv0y. 2001. Chemical speciation of copper and zinc in surface waters of the western Black Sea. Mar. Chem. 76: 233-251.

  67. Muller, F.L.L., S. Jacquet & W.H. Wilson. 2003. Biological factors regulating the chemical speciation of Cu, Zn, and Mn under different nutrient regimes in a marine mesocosm experiment. Limnol. Oceanogr. 48(6): 2289-2302.

  68. Muller, F.L.L., A. Larsen, C.A. Stedmon & M. S0ndergaard. 2005. Interactions between algal-bacterial populations and trace metals in fjord surface waters during a nutrient-stimulated summer bloom. Limnol. Oceanogr. 50(6): 1855-1871.

  69. Nagai, T., A. Imai, K. Matsushige et al. 2004. Voltammetric determination of dissolved iron and its speciation in freshwater. Limnology 5: 87-94.

  70. Osadchyy, V., B. Nabyvanets, P. Linnik et al. 2016. Processes determining surface water chemistry. Switzerland, Springer International Publishing. 270 pp.

  71. Paulsen, B.S. & T. Aslaksen. 1998. Extracellular polysaccharides from Ankistrodesmus densus (Chlorophyceae). J. Phycol. 34: 638-641.

  72. Rudd, T., R.M. Sterritt & J.N. Lester. 1984. Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymerics. Water Res. 18(3): 379-384.

  73. Rue, E.L. & K.W. Bruland. 1995. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50: 117-138.

  74. Schalk, I.J., M. Hannauer & A. Braud. 2011. New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology 13(11): 2844-2854.

  75. Striquer-Soares, F. & L. Chevolot. 1996. Particulate and dissolved carbohydrates and proteins in Lobo Reservoir (Sao Paulo State, Brazil): relationships withphytoplankton. J. Plankton Res. 18(4): 521-537.

  76. Strmecki, S., M. Plavsic, S. Steigenberger & U. Passow. 2010. Characterization of phyto-plankton exudates and carbohydrates in relation to their complexation of copper, cadmium and iron. Mar. Ecol. Prog. Ser. 408: 33-46.

  77. Sutherland, I.W. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3-9.

  78. Takahashi, Y., Y. Minai, S. Ambe et al. 1997. Simultaneous determination of stability constants of humate complexes with various metal ions using multitracer technique. Sci. Total Environ. 198: 61-71.

  79. Thurman, E.M. 1985. Organic geochemistry of natural waters. Dordrecht (The Netherlands), Kluwer Academic Publishers Group. 497 pp.

  80. Tipping, E. 2004. Cation binding by humic substances. Cambridge, Cambridge University Press. 434 pp.

  81. Tuschall, J.R. & P.L. Brezonik. 1980. Characterization of organic nitrogen in natural waters: its molecular size, protein content and interactions with heavy metals. Limnol. Oceanogr. 25(3): 495-504.

  82. Van den Berg, C.M.G. & M. Nimmo. 1987. Determination of interactions of nickel with dissolved organic material in seawater using cathodic stripping voltammetry. Sci. Total Environ. 60: 185-195.

  83. Van den Berg, C.M.G., P.T.S. Wong & Y.K. Chau. 1979. Measurement of complexing materials excreted from algae and their ability to ameliorate copper toxicity. J. Fish. Res. Board Can. 36(8): 901-905.

  84. Vasilchuk, T.A., V.P. Osipenko & T.V. Yevtukh. 2011. Peculiarities of migration and distribution of the main groups of organic matter in the water of the Kiev Reservoir depending on the oxygen regime. Hydrobiol. J. 47(2): 97-107.

  85. Vraspir, J.M. & A. Butler. 2009. Chemistry ofmarine ligands and siderophores. Ann. Rev. Mar. Sci. 1: 43-63.

  86. Whitby, H., A.M. Posacka, M.T. Maldonado & C.M.G. Van den Berg. 2018. Copper-binding ligands in the NE Pacific. Mar. Chem. 204: 36-48.

  87. Whitfield, D.M., S. Stojkovski & B. Sarkar. 1993. Metal coordination to carbohydrates. Structures and function. Coord. Chem. Rev. 122: 171-225.

  88. Witter, A.E., D.A. Hutchins, A. Butler & G.W. Luther. 2000. Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Mar. Chem. 69: 1-17.

  89. Wu, F.C., T. Midorikawa & E. Tanoue. 2001. Fluorescence properties of organic ligands for copper(II) in lake Biwa and its rivers. Geochem J.35: 333-346.

  90. Wu, F.C. & E. Tanoue. 2001. Geochemical characterization of organic ligands for copper (II) in different molecular size fractions in Lake Biwa. Japan. Org. Geochem. 32(11): 1311-1318.

  91. Zhang, D.Y.,X.L. Pan, K.M.G. Mostofaetal. 2010. Complexation between Hg(II) and biofilm extracellular polymericic substances: an application of fluorescence spectroscopy. J. Hazard Mater. 175: 359-365.

对本文的引用
  1. Linnik P. N., Zhezherya V. A., Linnik R. P., Potential Transformations of Dissolved Organic Substances and Their Complexes with Metals in Surface Waters under Solar Radiation, Russian Journal of General Chemistry, 91, 13, 2021. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain