图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
医药载体系统评论综述
影响因子: 2.9 5年影响因子: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN 打印: 0743-4863
ISSN 在线: 2162-660X

医药载体系统评论综述

DOI: 10.1615/CritRevTherDrugCarrierSyst.v23.i6.10
pages 437-495

Recent Progress in Dendrimer-Based Nanocarriers

Shuhua Bai
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
Chandan Thomas
Lake Erie College of Osteopathic Medicine School of Pharmacy
Amit Rawat
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
Fakhrul Ahsan
Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, USA

ABSTRACT

A large number of drug delivery systems—mostly in the form of liposomes, microspheres, nanoparticles and hydrogels—have been designed to achieve targeted delivery and sustained release of drugs by exploiting the inherent properties of polymers. The size, shape, and surface properties of the polymer are used to modulate the pharmacokinetic and pharmacodynamic behavior of drugs conjugated with or encapsulated in the polymeric carrier. Recently, a class of well-defined, monodisperse, and tree-like polymers called dendrimers has attracted attention because of the flexibility they offer in terms of their size, shape, branching, length, and surface functionality. A unique characteristic of dendrimers is that they can act as a particulate system while retaining the properties of a polymer. Drugs and diagnostic agents can be encapsulated in the central core or bound to the surface of the dendrimer by noncovalent or covalent interaction. Dendritic polymers can significantly improve pharmacokinetic and pharmacodynamic properties of low molecular weight and protein-based therapeutic agents. Furthermore, fluorescent antibodies and imaging contrast agents can be bound to these new polymers and the resulting complexes can be used for analyzing biological fluids and for diagnosis. Because of their size, shape, and ability to conjugate with a wide range of chemical entities, dendrimers have found many applications in the pharmaceutical and biomedical sciences. This review focuses on the unique carrier properties of biomimetic dendrimers and discusses a wide range of applications of dendrimers in drug delivery, including their use as drug solubilizers, absorption enhancers, release modifiers, and carriers for targeting drugs and diagnostic agents.


Articles with similar content:

Pharmaceutical and Biomedical Potential of Surface Engineered Dendrimers
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 3
Narendra Kumar Jain, Umesh Gupta, Jitendra Satija
Lipid-Based Cochleates: A Promising Formulation Platform for Oral and Parenteral Delivery of Therapeutic Agents
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 1
Emilio Squillante, III, Kwon H. Kim, Ravi Rao
Colloidosomes: An Emerging Vesicular System in Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 4
Yashwant Gupta, Satish Shilpi, Anekant Jain, Sanjay Kumar Jain
In Situ Gel-Forming System: An Attractive Alternative for Nasal Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 5
Yanhua Jia, Jianli Ma, Xiaoqing Wang, Lei Gao, Xiang Li, Guiyang Liu, Qingzhe Zhang, Shaolai Guo
Therapeutic Opportunities in Colon-Specific Drug-Delivery Systems
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 2
Avani Amin, Mayur M. Patel, Tejal Shah