图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.420
pages 384-396

FLAME SPREADING AND VIOLENT ENERGY RELEASE PROCESS OF ALUMINUM TUBING IN LIQUID AND GASEOUS OXYGEN ENVIRONMENTS

M. M. Mench
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A.
P. A. Houghton
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
J. G. Hansel
Air Products and Chemicals, Inc. Allentown, PA 18195-1501, USA

ABSTRACT

The intense reaction observed between aluminum and oxygen in a liquid oxygen (LOX) environment has been termed a violent energy release (VER) reaction, but the details of the combustion process are not fully understood. In this study, the promoted ignition, flame spreading, and combustion phenomena of aluminum 3003 alloy tubing filled with LOX, surrounded by a shell of gaseous oxygen (GOX), were observed. Parameters that were systematically varied include the tube- and shell-side GOX and LOX pressures, flow rates, oxygen purities, as well as igniter location, tube-side GOX quality, and sample thickness. An extremely high flame spreading rate, a high luminosity flame-zone, and a very rapid rate of heat release characterize the VER burning mode. The effect of tube- or shell-side impurity is to raise the threshold pressure for self-sustained combustion and VER transition. Decreased wall thickness tends to lower the threshold pressure for self-sustained combustion and transition to VER. It is believed that the VER flame-spreading mode is primarily a result of high convective mass flux of oxygen into the reaction zone due to oxygen phase transition; this process greatly enhances both the reaction rate and the molten material removal rate.


Articles with similar content:

FORMATION OF CONSOLIDATED NANOTHERMITE MATERIALS USING SUPPORT SUBSTRATES AND/OR BINDER MATERIALS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 5
Chris J. Bulian, Jacek J. Swiatkiewicz, Deepak Kapoor, Jan A. Puszynski
Ignition and Combustion Behavior of MTV Igniter Materials for Base Bleed Applications
International Journal of Energetic Materials and Chemical Propulsion, Vol.1, 1991, issue 1-6
T. S. Snyder, B. L. Fetherolf, Dah-Ming Chen, T. A. Litzinger
ANALYSIS OF QUASI-STEADY AND TRANSIENT BURNING OF HYBRID FUELS IN A LABORATORY-SCALE BURNER BY AN OPTICAL TECHNIQUE
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 5
G. Rambaldi, M. Manzoni, Christian Paravan, Luigi T. De Luca
The Comparative Characteristic of Lipid Composition and Motor Activity of the Calanus euxinus (Copepoda) Ecogroup during Diapause
Hydrobiological Journal, Vol.35, 1999, issue 5
T. V. Yuneva, A. M. Shchepkina, L. S. Svetlichniy
COMBUSTION AND FLAME SPREADING OF ALUMINUM TUBING IN HIGH PRESSURE OXYGEN
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
J. P. Haas, M. M. Mench