图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i4.10
pages 285-304

RADIATIVE IGNITION OF SOLID PROPELLANTS: A PRACTICAL APPROACH

Franck Cauty
ONERA
retired
Yves Fabignon
ONERA−The French Aerospace Lab, Palaiseau, France
Charles Erades
ONERA−The French Aerospace Lab, Palaiseau, France

ABSTRACT

We were interested in studying solid propellant time-to-ignition determination from two perspectives. First, we experimentally determined the sensitivity of composite propellants to ignition by using CO2 laser radiation instead of the classical convective heat generator used at Onera for many decades. Second, we validated the propellant degradation data using a one-dimensional (1D) simulation model based on a classical relationship set. The setup and the associated measurement systems are described in detail in this paper. High-speed video images were obtained, and surface luminance temperature evolutions from optical-fiber pyrometers were determined. The results showed the inert heating of the sample, then the start of binder degradation, and upon ignition of a first ammonium perchlorate (AP) grain ("first light"), rapid rise of temperature to the stationary combustion level. We comment on the different ignition delay times corresponding to criteria and the physical process of the AP propellant grain ignition. The first AP grain large enough to propagate heat to other grains around it, and close enough to the surface, is the starting element of the ignition process. These experimental results were then compared to a 1D numerical simulation model. The solid propellant thermal and reaction parameters were determined from the literature values of the ingredients [AP, hydroxyl terminated polybutadiene (HTPB), and aluminum (Al)] and their mixture ratio. The model gives the surface temperature evolution and the burning rate variation from 0 to the stationary value. The experimental and numerical results showed that the pre-exponential factor of the Arrhenius law governs the delay time and the ignition surface temperature level.

REFERENCES

  1. Cauty, F. and Erades, C., Solid rocket motor thermal insulation: A decade of SNECMA-ONERA cooperation.

  2. De Luca, L., Ohlemiller, T., Caveny, L., and Summerfield, M., Radiative ignition of double base propellants: I. Some formulation effects.

  3. Godon, J.-C., Modeiisation de la Combustion Normale et Erosive des Propergols Composites.

  4. Jackson, T. L. and Buckmaster, J., Heterogeneous propellant combustion.

  5. Lengelle, G., Bizot, A., Duterque, J., and Amiot, J., Ignition of solid propellants.

  6. Lengelle, G., Duterque, J., and Trubert, J.-F., Physical-chemical mechanisms of solid propellant combustion.

  7. Lengelie, G., Thermal degradation kinetics and surface pyrolysis of polymers.

  8. Weber, J. W., Tang, K. C., and Brewster, Q., Ignition of composite solid propellants: Model development, experiments, and validation.


Articles with similar content:

NEW ACTIVE BINDER-BASED PROPELLANTS: A COMPARISON WITH CLASSICAL COMPOSITE AP/HTPB PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 1
Franck Cauty, Yves Fabignon, Charles Erades
GLYCIDYL AZIDE POLYMER−COMBUSTION MECHANISM AND ITS APPLICATION TO HYBRID ROCKET MOTORS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 4
Makihito Nishioka, Keiichi Hori
STUDY OF THE COMBUSTION MECHANISM OF AN-BASED PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.7, 2008, issue 2
Valery P. Sinditskii, Derek Tomazi, Viacheslav Yu. Egorshev
IGNITION DELAY TIME MEASUREMENT OF A REDUCED SMOKE COMPOSITE SOLID PROPELLANT
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 2
Bora Yazici, Sertac Curdaneli, A. Ulas
COMBUSTION MECHANISM OF TETRA-OL GLYCIDYL AZIDE POLYMER AND ITS APPLICATION TO HYBRID ROCKETS
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 6
Nobuyuki Tsuboi, Kiyokazu Kobayashi, Makihito Nishioka, Keiichi Hori, Yoshio Seike, Yutaka Wada, Toru Shimada, Katsuya Hasegawa