图书馆订阅: Guest
国际能源材料和化学驱动期刊

每年出版 6 

ISSN 打印: 2150-766X

ISSN 在线: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

THE MECHANISMS INVOLVED IN THE COMBUSTION OF A LIQUID OXIDIZER CAPSULE CONTAINED IN A SOLID FUEL

卷 7, 册 6, 2008, pp. 523-547
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v7.i6.50
Get accessGet access

摘要

The combustion of a liquid oxidizer capsule contained in a solid fuel is an unexplored issue. The new concept is motivated by the potential enhancement of solid propellant energetic performance by the addition of a liquid oxidizer. A liquid oxidizer droplet is contained in a polymeric/metallic shell to ensure oxidizer and fuel separation and to avoid undesirable premature reaction. The combustion of a liquid oxidizer capsule with adjacent solid fuel is a cyclic complicated process, which includes heating of the liquid, mechanical/thermal rupture of the shell, liquid vaporization, and diffusion-dominated flame formation. The choice of the shell material has a major impact on its rupture mechanism, on the oxidizer release form, and on the resulting flame structure. When a polymeric shell is used, the configuration resembles the case of a liquid oxidizer droplet contained in a solid fuel. When the shell of the capsule is metallic, the expansion of the liquid oxidizer ruptures the capsule in the very initial stages of heating. To avoid premature oxidizer release, the capsule needs to be filled only partially. At supercritical conditions, the oxidizer is generally released as a gaseous puff. A one-dimensional mathematical model predicts fuel and oxidizer surface temperatures, flame height, and fuel regression rate as a function of operating pressure, capsule shell material, and oxidizer filling percentage. Contrary to AP-HTPB combustion, it is shown that the fuel always regresses more slowly than the oxidizer. The regression rates are typical to solid propellant combustion.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain