图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i4.10
pages 393-424

COMBUSTION ISSUES AND APPROACHES FOR CHEMICAL MICROTHRUSTERS

Richard A. Yetter
The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Vigor Yang
Department of Mechanical Engineering The Pennsylvania State University University Park, PA 16802, USA; School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Ming Hsun Wu
Department of Mechanical Engineering, National Cheng Kung University, Tainan City 70101 Taiwan
Yanxing Wang
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802
Dave Milius
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544
Ilhan A. Aksay
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544
Frederick L. Dryer
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

ABSTRACT

In the present paper, results from the development of a meso/micro scale liquid-propellant thruster are reported along with a discussion of the usage of microthrusters in small spacecraft and the effects of downsizing on combustion performance. In particular, combustion of liquid nitromethane in a thruster combustion chamber with a volume of 108 mm3 and diameter of 5 mm was experimentally investigated. The meso-scale combustor utilized a vortex combustion concept, in which monopropellants were injected tangentially from the front end of the cylindrical combustor and combustion products exited the chamber tangentially at the other end. Although combustion was achievable at pressures as low as 150 psig, pressures as high as 350 psig were required for complete combustion. Combustion at atmospheric pressure was achieved only with the addition of small quantities of oxygen. To complement the experiments, a comprehensive numerical analysis was developed to study the combustion of liquid monopropellant in a small-volume vortex chamber based on a two-phase flow analysis using the level-set approach. The model allows for a detailed investigation of the liquid-film motion and gas-phase flow development. Combustion chambers and nozzles were fabricated from ceramics (alumina) because of the high flame temperatures required to sustain gas-phase reactions. Operation of thrusters on hydrogen-air-oxygen mixtures at a combustion chamber pressure of 40 psig was demonstrated to produce characteristic velocity efficiencies of approximately 90%.


Articles with similar content:

EFFECT OF DIFFERENT FLASH-TUBE VENT-HOLE PATTERNS ON INTERIOR BALLISTIC PROCESSES OF IGNITION CARTRIDGE OF 120-MM MORTAR SYSTEM
International Journal of Energetic Materials and Chemical Propulsion, Vol.7, 2008, issue 5
Ragini Acharya
INVESTIGATION OF FUEL-RICH BORON COMBUSTION IN A PRESSURIZED COMBUSTION BOMB
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
S. Anders, Roland Pein
THE ROLE OF ADDITIVES IN COMBUSTION MECHANISM OF AMMONIUM NITRATE
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 2
Valery V. Serushkin, Anton I. Levshenkov, Valery P. Sinditskii, Viacheslav Yu. Egorshev
EFFECT OF FLASH-TUBE VENT-HOLE PATTERNS ON THE COMBUSTION PRODUCT DISCHARGE RATE
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 3
Jeffrey D. Moore, Peter J. Ferrara, Ragini Acharya
COMBUSTION OF BIMODAL ALUMINUM PARTICLES AND ICE MIXTURES
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 3
Steven F. Son, Grant A. Risha, Vigor Yang, Terrence L. Connell, Jr., Richard A. Yetter