图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
环境病理学,毒理学和肿瘤学期刊
影响因子: 1.241 5年影响因子: 1.349 SJR: 0.356 SNIP: 0.613 CiteScore™: 1.61

ISSN 打印: 0731-8898
ISSN 在线: 2162-6537

环境病理学,毒理学和肿瘤学期刊

DOI: 10.1615/JEnvironPatholToxicolOncol.v28.i1.90
pages 85-88

A Paradox of Cadmium: A Carcinogen That Impairs the Capability of Human Breast Cancer Cells To Induce Angiogenesis

Stefania Pacini
Department of Anatomy, Histology and Forensic Medicine, University of Florence, Italy
Tiziana Punzi
Department of Anatomy, Histology and Forensic Medicine, University of Florence, Italy
Gabriele Morucci
Department of Anatomy, Histology and Forensic Medicine, University of Florence, Italy
Massimo Gulisano
Department of Anatomy, Histology and Forensic Medicine, University of Florence, Italy
Marco Ruggiero
Department of Experimental Pathology and Oncology, University of Florence, Italy

ABSTRACT

Cadmium, a highly persistent heavy metal, has been categorized as a human carcinogen. Even though it is known that cadmium acts as estrogens in breast cancer cells, several studies failed to demonstrate whether cadmium is a causal factor for breast cancer. The lack of a strong association between cadmium and breast cancer could be found in the antiangiogenic properties of this heavy metal, which might counteract its carcinogenic properties in the progression of breast cancer. In this study, we exposed estrogen-responsive breast cancer cells to subtoxic levels of cadmium, and we evaluated their angiogenic potential using the chick embryo chorioallantoic membrane assay. Exposure of breast cancer cells to subtoxic levels of cadmium significantly inhibited the angiogenic potential of the breast cancer cell line, suggesting the possibility that cadmium might negatively regulate the production of proangiogenic factors in breast cancer cells. Our results suggest that cadmium might exert a paradoxical effect in breast cancer: on the one hand, it could promote carcinogenesis, and, on the other hand, it could delay the onset of tumors by inhibiting breast cancer cell-induced angiogenesis.