图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
电信和无线电工程
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN 打印: 0040-2508
ISSN 在线: 1943-6009

卷:
卷 79, 2020 卷 78, 2019 卷 77, 2018 卷 76, 2017 卷 75, 2016 卷 74, 2015 卷 73, 2014 卷 72, 2013 卷 71, 2012 卷 70, 2011 卷 69, 2010 卷 68, 2009 卷 67, 2008 卷 66, 2007 卷 65, 2006 卷 64, 2005 卷 63, 2005 卷 62, 2004 卷 61, 2004 卷 60, 2003 卷 59, 2003 卷 58, 2002 卷 57, 2002 卷 56, 2001 卷 55, 2001 卷 54, 2000 卷 53, 1999 卷 52, 1998 卷 51, 1997

电信和无线电工程

DOI: 10.1615/TelecomRadEng.v73.i18.40
pages 1645-1659

AN APPROACH TO PREDICTION OF SIGNAL-DEPENDENT NOISE REMOVAL EFFICIENCY BY DCT-BASED FILTER

V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
A. Rubel
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
S. S. Krivenko
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
A. Naumenko
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
Benoit Vozel
University of Rennes 1, Enssat, Lannion, 22300, France
Kacem Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France
Karen O. Egiazarian
Tampere University, Department of Signal Processing, P. O. Box 553, FIN-33101, Tampere, Finland
J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

ABSTRACT

An approach to prediction of denoising efficiency for DCT-based filter applied to images corrupted by signal-dependent noise is presented. This approach allows estimating quantitative criteria of filtering efficiency from one statistical parameter that can be quickly calculated for a given noisy image under condition that parameters of signal-dependent noise are a priori known or pre-estimated with appropriate accuracy. We demonstrate in this paper that the prediction approach is applicable to different types of signal-dependent noise. Besides, we show that the statistical parameter used for prediction can be calculated in different ways and this influences prediction accuracy.


Articles with similar content:

DETECTION OF MOVING TARGETS BY MULTI-LOOK SINGLE-ANTENNA SYNTHETIC APERTURE RADAR
Telecommunications and Radio Engineering, Vol.73, 2014, issue 2
B. A. Kochetov, O. O. Bezvesilniy
Development and Analysis of Robust Algorithms for Guaranteed Ellipsoidal Estimation of the State of Multidimensional Linear Discrete Dynamic Systems. Part 1
Journal of Automation and Information Sciences, Vol.32, 2000, issue 3
Lidiya I. Tyutyunnik, Victor V. Volosov
Robust Multiobjective Identification of Nonlinear Objects Based on Evolving Radial Basis Networks
Journal of Automation and Information Sciences, Vol.45, 2013, issue 9
Alexander A. Bezsonov, Oleg G. Rudenko
SEQUENTIAL SPARSITY ITERATIVE OPTIMAL DESIGN MODEL FOR CALIBRATION OF COMPLEX SYSTEMS WITH EPISTEMIC UNCERTAINTY
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 2
Chang Li, Weifeng Li, Xiaojun Duan
Methods for Blind Evaluation of Noise Variance in Multichannel Optical and Radar Images
Telecommunications and Radio Engineering, Vol.65, 2006, issue 6-10
Benoit Vozel, Kacem Chehdi, N. N. Ponomarenko, S. K. Abramov