xxiv SYMBOLS

## **SYMBOLS**

| A                                 | surface area                                                                |
|-----------------------------------|-----------------------------------------------------------------------------|
| $A_{n \to m}$                     | Einstein Coefficient of spontaneous emission                                |
| $\bar{A}_b(s)$                    | effective bandwidth                                                         |
| a                                 | mean absorption coefficient; gray-medium absorption coefficient             |
| $a_{\lambda}, a_{\eta}$           | absorption coefficient                                                      |
| $a_{\eta}^*$                      | dimensionless absorption coefficient                                        |
| $\overset{\cdot }{B}{}^{\prime }$ | total number of V-R bands for a given gas or gas mixture                    |
| $B_{m \to n}$                     | Einstein coefficient of absorption                                          |
| $B_{n\to m}$                      | Einstein coefficient of stimulated emission                                 |
| $B_k\left(\mathbf{u}_k\right)$    | quantity defined by Eqs. $(19.8)$ - $(19.9)$                                |
| $B_{k-j}(n)$                      | quantity defined by Eq. (22.33)                                             |
| b                                 | integer indicating to which V-R bands reference is being made               |
| C                                 | constant; also, symbol for a curve in the plane                             |
| $C_s$                             | scattering cross section of a particle                                      |
| $C_a$                             | absorption cross section of a particle                                      |
| c                                 | speed of electromagnetic wave                                               |
| $c_o$                             | speed of electromagnetic waves in free space                                |
| $c_f$                             | factor correcting the geometric mean beam length                            |
| D                                 | diameter, molecular diameter, plane layer thickness                         |
| $\hat{\mathbf{d}}$                | unit vector indicating a particular direction in space                      |
| d                                 | number of diffuse surfaces in a specular enclosure                          |
| ${f E}$                           | electric field intensity                                                    |
| $E_x, E_y, E_z$                   | components of ${f E}$                                                       |
| $E_0$                             | amplitude of a sinusoidal electric field                                    |
| E                                 | energy of a photon                                                          |
| $E_{nm}$                          | $e_n - e_m$                                                                 |
| $E_{\perp}, E_{\parallel}$        | components of <b>E</b> perpendicular and parallel to plane of incidence     |
| $E_g$                             | semiconductor's energy gap                                                  |
| $E_l$                             | photon energy associated with the $l^{\text{th}}$ line of a band structure  |
| $E_n(x)$                          | exponential integral function                                               |
| e                                 | energy of a fundamental particle                                            |
| $e_m$                             | energy of the $m^{\text{th}}$ discrete energy level available to a particle |
| $e_i$                             | energy level associated with the $i^{\rm th}$ quantum state of a system     |
| $e_{\lambda}$                     | emissive power                                                              |
| $e_{\lambda b} \ e_{\eta b}$      | blackbody emissive power                                                    |
| e                                 | total emissive power                                                        |

```
total blackbody emissive power
                  e_{\lambda b}, e_{nb} evaluated at temperature T_k
e_{\lambda bk}, e_{\eta bk}
\hat{\mathbf{e}}
                  unit vector along a line joining two points on an enclosure surface
                  blackbody vector; its elements are the set of e_{\lambda bk}'s
\mathbf{e}_{\lambda b}
F_{di-j}
                  point form factor from elemental area di to surface j
                  form factor from surface i to surface j
F_{i-i}
                  (universal) fractional blackbody energy function
F_{0-x}(x)
\mathbf{F}
                  form factor matrix with elements F_{i-j}
F^s_{k-j}\\ \mathbf{F}^s
                  specular form factor from surface k to surface j
                  specular form factor matrix with elements F_{k-i}^s
\Im_{\lambda k-i}
                  exchange factor from surface k to surface j
\overline{\mathfrak{F}}_{k-j}\left(T\right)
                  total exchange factor from k to j, for temperature T
\overline{\mathfrak{F}}_{\lambda}
                  exchange factor matrix
\overrightarrow{\Im}_{k-j}^s
                  specular enclosure exchange factor from k to j
                  specular enclosure exchange factor matrix
\overrightarrow{\Im}(a_n)
                  gaseous exchange factor matrix
f_{0-\lambda}\left(T\right)
                  fraction of e_{\lambda b} at temperature T with wavelength \leq \lambda
f_{\lambda_1 - \lambda_2}\left(T\right)
                  fraction of e_{\lambda b} at temperature T with wavelength
                  between \lambda_1 and \lambda_2
f_v
                  volume fraction of a sooty gas occupied by soot particles
G_{d1-j}(x)
                  gaseous point form factor (function) from area di to surface j
G_{k-j}(x)
                  gaseous form factor (function) from surface k to surface j
G_{sc}
                  solar constant
\mathbf{G}(x)
                  matrix of gaseous form factor functions
                  magnetic field intensity
H_x, H_y, H_z
                  components of H
H_0
                  amplitude of a sinusoidal variation in H
                  hemispherical solid angle bisected by \hat{\mathbf{n}} or \hat{\mathbf{k}}
H_n, H_k
                  Planck's constant
h_P
                  convective heat transfer coefficient
h_c
h_{rk-j}
                  radiative heat transfer coefficient between surfaces k and j
Ι
                  identity matrix
I
                  number of image surfaces in a specular enclosure
i
                  quantum state number
\begin{matrix} i'_{\lambda}, \, i'_{\eta} \\ i'_{\lambda b}, \, i'_{\eta b} \\ i'_{\lambda b n} \\ i', \, i'_{b} \\ \widehat{\mathbf{i}} \end{matrix}
                  intensity
                  blackbody intensity
                  blackbody intensity inside medium of index of refraction n
                  total intensity, total blackbody intensity
                  unit vector along x-axis
J(u,v)
                  surface factor for a parametric surface, = |\mathbf{J}(u, v)|
                  surface normal for a parametric surface
\mathbf{J}(u,v)
```

xxvi SYMBOLS

| j                                       | integer representing a particular enclosure surface       |
|-----------------------------------------|-----------------------------------------------------------|
| $rac{j}{\mathbf{\hat{j}}}$             | unit vector along y-axis                                  |
| $K_{x\lambda}$                          | extinction coefficient                                    |
| K()                                     | kernel of an integral equation                            |
| $K, K_D$                                | optical depths for gray medium: $K = ax$ , $K_D = aD$     |
| $k_B$                                   | Boltzmann constant                                        |
| $\hat{\mathbf{k}}$                      | unit vector along the z-axis                              |
| k                                       | thermal conductivity of medium                            |
| k                                       | integer representing a particular enclosure surface       |
| k()                                     | kernel of a single-variable integral equation             |
| L                                       | distance or dimension                                     |
| l                                       | integer representing a particular line in a band          |
| M                                       | molecular mass                                            |
| N                                       | number of particles per unit volume                       |
| N                                       | total number of surfaces in an enclosure                  |
| $N_p$                                   | number of scattering particles per unit volume            |
| $N_c$                                   | number of FCM surfaces in an enclosure                    |
| $\mathbf N$                             | normal to a surface or curve                              |
| $N_f$                                   | number of terms in a truncated Fourier series             |
| $N_1, N_2$                              | conduction/radiation parameters                           |
| n                                       | index of refraction                                       |
| $n_{P,E} \ (n'_{P,E})$                  | spectral (directional) photon density                     |
| $\hat{\mathbf{n}}$                      | unit vector normal to a surface                           |
| $n_r$                                   | rotational quantum number                                 |
| $n_v$                                   | vibrational quantum number                                |
| P(e)                                    | probability that system is in quantum state of energy $e$ |
| $\stackrel{P}{=}$                       | pressure                                                  |
| P                                       | vector of power carried by an electromagnetic wave        |
| $P_x, P_y, P_z$                         | components of P                                           |
| $P_E$                                   | equivalent-broadening pressure                            |
| $P_A$                                   | partial pressure of active component of a gas mixture     |
| $P_0$                                   | reference pressure equal to one atmosphere                |
| $P_{\mathrm{H}_2\mathrm{O}}$            | partial pressure of H <sub>2</sub> O                      |
| $P_{\rm CO_2}$                          | partial pressure of CO <sub>2</sub>                       |
| $Q_{r\lambda}$                          | radiant heat flow over a finite surface                   |
| $Q_k$                                   | total rate at which radiative heat leaves surface $k$     |
| $Q_g$                                   | total rate at which radiative heat leaves the gas         |
| $Q_{\lambda k}$ , $Q_{\eta k}$          | spectral rate at which radiative heat leaves surface $k$  |
| $q_{r\lambda}$ , $q_{rE}$ , $q_{r\eta}$ | radiant heat flux                                         |
| $q_{r\lambda,bn}$                       | radiant heat flux in a medium of index of                 |
|                                         | refraction $n$ , at photonic equilibrium                  |

| $q_r$                                                                                              | total radiant heat flux                                               |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| $q_{r\lambda,\omega}$                                                                              | partial radiant heat flux                                             |
| $\hat{q}_{r\lambda}$                                                                               | net radiant heat flux                                                 |
| $\bar{q}_{r\lambda k}$                                                                             | average radiant heat flux over surface $k$                            |
| $\mathbf{q}_r$                                                                                     | vector of radiant heat fluxes                                         |
|                                                                                                    | components of $\mathbf{q}$                                            |
| $ \hat{q}_{ri},  \hat{q}_{rj},  \hat{q}_{rk} \\ q_r''' $                                           | rate per unit volume at which radiant energy leaves medium            |
| $q_{s\lambda}, q_{s\eta}$                                                                          | (spectral) surface heat flux                                          |
| $q_s$                                                                                              | surface heat flux                                                     |
| $q_{\lambda o k}, q_{\eta o k}$                                                                    | outgoing radiant heat flux at surface $k$                             |
| $\bar{q}_{\lambda o k},  \bar{q}_{\eta o k}$                                                       | average outgoing radiant heat flux at surface $k$                     |
| $q_{ok}$                                                                                           | total outgoing radiant heat flux at surface $k$                       |
| $ar{q}_{ok}$                                                                                       | average total outgoing radiant heat flux over surface $k$             |
| $\mathbf{q}_{\lambda o},\mathbf{q}_{\eta o}$                                                       | vector of average outgoing radiant heat fluxes                        |
| $\mathbf{q}_o$                                                                                     | vector of total average outgoing radiant heat fluxes                  |
| $\mathbf{q}_{\lambda}\;,\mathbf{q}_{\eta}$                                                         | spectral heat flow vector                                             |
| q                                                                                                  | total heat flow vector                                                |
| $R_{sp,n\to m}$                                                                                    | rate of spontaneous emissions $n \to m$ , per unit volume             |
| $R_{st,n \to m}$                                                                                   | rate of stimulated emissions $n \to m$ , per unit volume              |
| $R_{ab,m\to n}$                                                                                    | rate of absorption transitions $m \to n$ , per unit volume            |
| $R^{'}$                                                                                            | radius                                                                |
| $R'_{sp,n\to m}$                                                                                   | directional rate of spontaneous emission transitions $n \to m$ ,      |
|                                                                                                    | per unit volume                                                       |
| $R'_{st,n\to m}$                                                                                   | directional rate of stimulated emission transitions $n \to m$ ,       |
|                                                                                                    | per unit volume                                                       |
| $R'_{ab,m \to n}$                                                                                  | directional rate of absorption transitions $m \to n$ ,                |
|                                                                                                    | per unit volume                                                       |
| $R_{ki}$                                                                                           | thermal resistance between $k$ th surface and                         |
|                                                                                                    | a nearby node at $T_{ki}$                                             |
| $R_k$                                                                                              | $= \rho_k$ if k is T-specified and $= 1$ if it is q-specified         |
| $\mathbf{r}$                                                                                       | position vector: $\mathbf{r} = (x, y, z)$                             |
| $r_e, r_{eDC}$                                                                                     | electrical resistivity, DC electrical resistivity                     |
| ${f r}_{\lambda}$                                                                                  | reflectivity matrix                                                   |
| $\mathbf{r}_k$                                                                                     | position vector of a point on surface $k$                             |
| $S, S_j$                                                                                           | surface, surface $j$                                                  |
| $S_E', S_\lambda'$                                                                                 | source term in the RTE                                                |
| $S'_{\lambda,i},(S'_{\lambda,o})$                                                                  | contribution to $S'_{\lambda}$ due to inscattering (outscattering)    |
| $S'_{E}, S'_{\lambda}$ $S'_{\lambda,i}, (S'_{\lambda,o})$ $S_{l}, \overline{S}$ $\overline{S}_{0}$ | line strength of $l^{\text{th}}$ line, average line strength          |
| $S_0$                                                                                              | average line strength at the band center                              |
| s                                                                                                  | distance measured along a ray                                         |
| $s, s(\mathbf{u}, \mathbf{u}^*)$                                                                   | distance between two points ${\bf u}$ and ${\bf u}^*$ on an enclosure |
|                                                                                                    |                                                                       |

xxviii SYMBOLS

```
distance between a point on k and a point on j
s_{k-j}
            mean beam length between surfaces j and k
\bar{s}_{k-j}
\bar{s}_{k-j,o}
            geometric mean beam length between j and k
T
            temperature
T_g
            gas temperature
T_s
            surface temperature
T_j
            temperature of surface j, \ j=1,2..k...N
            temperature of surface k, k = 1, 2...j....N
T_k
            temperature of i^{th} node exchanging nonradiative heat with k
T_{ki}
\bar{T}_k
            mean temperature of surface k
t
            time
t_{\lambda}(s)
            optical thickness
            film thickness of a composite surface
t_f
u, v
            parameters relevant to a parametric surface representation
\mathbf{u}, (u, v)
            vector with components u and v; \mathbf{u} fixes a point on a surface
            \mathbf{u} fixing a point on the kth surface
\mathbf{u}_k
            dimensionless path length, = \overline{S}_0 s/\delta
u
V
            volume
V_p
            particle volume
X
            any extensive measure of the radiant field
            Cartesian coordinates in space
x, y, z
```

## Greek Letters

| $\alpha'_{\lambda}$                                                                     | absorptivity of a surface                                      |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|
| $\alpha'$                                                                               | total absorptivity                                             |
| $\alpha'_{\lambda n}$                                                                   | normal absorptivity (applies when incident ray is normal)      |
| $\alpha(T), \alpha_b(T)$                                                                | tabulated function of $T$ , see Tables 21.4 and 21.5           |
| $\alpha_{g,j}(s)$                                                                       | total gas absorptivity                                         |
| $\beta$                                                                                 | exponential wide-band's line width to spacing parameter        |
| $\beta$                                                                                 | angle measured from the $x$ -axis                              |
| $\gamma, \gamma_0$                                                                      | electrical permittivity, electrical permittivity of free space |
| $\gamma$                                                                                | opening angle of a V-corrugated surface                        |
| $\gamma(T),  \gamma_b(T)$                                                               | tabulated function of $T$ , see Tables 21.6, and 21.7          |
| $\frac{\delta}{\delta_l}$ , $\delta_l$                                                  | line spacing, line spacing of $l^{\text{th}}$ line             |
|                                                                                         | mean line spacing                                              |
| $egin{array}{l} \delta_{i,j} \ \epsilon'_{\lambda} \ \epsilon'_{\lambda n} \end{array}$ | Kronecker delta function: = 1 if $i = j$ ; = 0 otherwise       |
| $\epsilon_\lambda'$                                                                     | emissivity                                                     |
| $\epsilon'_{\lambda n}$                                                                 | normal emissivity                                              |
| $\epsilon_{\lambda} \; (\epsilon_{\lambda k})$                                          | hemispherical emissivity (of $k$ th surface)                   |
| $\epsilon$                                                                              | total hemispheric emissivity                                   |
| $\epsilon_k$                                                                            | total hemispheric emissivity of surface $k$                    |
|                                                                                         |                                                                |

xxix

```
total directional emissivity
             total normal emissivity
             total hemispheric emissivity
             emissivity matrix
\epsilon_{\lambda}
            total gas emissivity
\epsilon_a(s)
            soot emissivity
\epsilon_{soot}
             total emissivity matrix
\epsilon_s, \epsilon_t
            emissivity matrices for enclosures with q-specified surfaces
            specular total emissivity matrix
             wave number
\eta
             wave number at center of l^{\text{th}} line
\eta_l
             wave number at center of vibration rotation band
\bar{\eta}_b, \, \eta_c
\eta^*
             dimensionless wave number distance from center of smoothed band
\theta, \theta_k
             angle from surface normal, angle from normal to the kth surface
\theta
             colatitude angle; with \varphi, angle specifying a direction \hat{\mathbf{d}};
             angle between \hat{\mathbf{d}} and \hat{\mathbf{k}} or between \hat{\mathbf{d}} and \hat{\mathbf{n}}
             (in scattering) the angle between two directions, \hat{\mathbf{d}} and \hat{\mathbf{d}}'
\theta_{1i}, \theta_i
             angle of incidence
             (for smooth surface) angle of reflection at interface 1-2
\theta_{1,r}
\theta_{2t}
             (for smooth surface) angle of refraction
\theta_B
             Brewster angle
             angle of total internal reflection
\theta_{\mathrm{max}}
             (for rough surface) angle of reflected direction considered, from normal
\theta(\eta^*)
             function used for characterizing the smoothed band
\theta, \theta_2
             dimensionless absolute temperatures, \theta = T/T_1; \theta_2 = T_2/T_1
             absorption index
\kappa
\lambda_a, \lambda
             wavelength, free-space wavelength
             magnetic permeability, magnetic permeability of free space
\mu, \mu<sub>0</sub>
\mu
\nu
             frequency of electromagnetic wave
            surface reflectivity
             reflectivity for radiation incident normal to surface
             bidirectional reflectivity
             total reflectivity
            hemispheric reflectivity, hemispheric reflectivity of kth surface
\rho_{\lambda}, \, \rho_{\lambda k}
             total hemispheric reflectivity, total hemispheric reflectivity of k
\rho, \rho_k
             gas density
            Stefan-Boltzmann constant
\sigma
            scattering coefficient
\sigma_{\lambda}
             azimuth angle; with \theta, angle specifying a direction \hat{\mathbf{d}}
```

XXX SYMBOLS

 $\begin{array}{lll} \varphi_r & \text{azimuth angle of reflected direction considered} \\ \varphi_b,\,\varphi_g & \text{dimensionless temperatures given by Eqs. (23.19) and (23.27)} \\ \chi & \text{alternate symbol for } \theta_{2t} \\ \omega,\,\omega_j & \text{solid angle, solid angle subtended by surface } j \\ \omega & \text{bandwidth of an exponential wide band} \\ \omega_0 & \text{wide band property tabulated in Table 21.3} \\ \Phi\left(\hat{\mathbf{d}},\,\hat{\mathbf{d}}'\right) & \text{phase function relevant to scattering} \end{array}$