
Appendix A

Parametric Representation
of Surfaces

A.1 Introduction
In many types of radiant analysis, the parametric method of representing sur-
faces has important advantages over the implicit method. In the implicit method,
surfaces are represented by an equation of the form f(x, y, z) = 0. For exam-
ple, the unit-radius sphere centered at the origin is represented implicitly as
x2 + y2 + z2 − 1 = 0 and the unit radius circular cylinder along the z-axis by
x2 + y2 − 1 = 0.
A good starting point for parametric surface representation is a review of

the parametric representation of curves, with which the student should already
be familiar. The general expression for such a curve representation is

C : x = x(t); y = y(t); z = z(t) α ≤ t ≤ β (A.1)

where x(t), y(t),and z(t) are three functions. For example, the unit radius circle
in the horizontal plane one unit up the z-axis and centered along the z-axis is
given by

C : x = cos(t); y = sin(t); z = 1 0 ≤ t ≤ 2π (A.2)

As parameter t takes on all possible values in the interval α ≤ t ≤ β, the point at
coordinates (x, y, z) covers the entire curve. Another example is the parametric
representation of the straight line connecting the origin to the point (1, 2, 3):

C : x = t; y = 2t; z = 3t 0 ≤ t ≤ 1 (A.3)

Curves can also be defined parametrically in vector form, for which the general
representation is

C : r = x(t)bi+ y(t)bj+ z(t)bk α ≤ t ≤ β (A.4)
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(Here, r is of course the position vector, = (x, y, z), and bi, bj, and bk are the unit
vectors along the x-, y-, and z- axis, respectively.) In this form, the curve C has
the following interpretation: let the tail of the position vector be kept at the
origin; then as t runs continuously through all values from α to β, the tip of the
position vector traces out the curve C in space. Note that the general curve can
now be given by the compact expression:

C : r = r(t) α ≤ t ≤ β (A.5)

where r(t) = x(t)bi+ y(t)bj+ z(t)bk, is a vector function of t.
The properties of the curve, such as its elemental length ds, its tangent

vector bT, and its normals bN and bB, can be found by straightforward operations
on r(t). For example

ds = J(t)dt where J(t) = |dr(t)/dt| (A.6)

and bT = [dr(t)/dt]/J(t). The curve’s length L is given by
L =

βZ
α

J(t)dt (A.7)

It should be recognized that the parametric representation of a curve is not
unique; that is, there is more than one function r(t) that can specify the same
curve in space. For example, the parametric representation

C : r =
1− t2
1 + t2

bi+ 2t

1 + t2
bj+ bk 0 ≤ t ≤ 1 (A.8)

represents the same circle as that described by Eq. (A.2).
The parametric equation for a surface is a simple extension of the equation

for a curve. The general representation corresponding to Eq. (A.1) is

S : x = x(u, v); y = y(u, v); z = z(u, v) u, v ∈ Ru,v (A.9)

where x(u, v), y(u, v), and z(u, v) are functions of u and v. Thus, in this rep-
resentation, there are two parameters, u and v, instead of the single parameter
t. As u and v run through all the values inside a prescribed range, the point
at coordinate (x, y, z) moves through values that cover the entire surface. For
every combination of u and v, there will be one point on the surface. It is useful
to conceptually construct a u-v plane, having u along the ordinate axis and v
along the abscissa axis. Then we can say that for every point on the surface,
there is a unique corresponding point on the u-v plane and vice-versa.
The prescribed range of u and v is defined by the statement u, v ∈ Ru,v,

which corresponds to the statement α ≤ t ≤ β in Eq. (A.1). The Ru,v defines
the region in the u-v plane over which u and v are allowed to range, and the
symbol ∈ can be interpreted as “are contained within.” The simplest region
Ru,v is a rectangular region bounded by lines of constant u and v in the u− v
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plane. This would be covered by the statements: αu ≤ u ≤ βu, αv ≤ v ≤ βv,
and if this applies, then u, v ∈ Ru,v in Eq. (A.9) would simply be replaced by
these two statements.
A few examples should clarify the above. An L×W rectangle in a vertical

plane h unit along the positive x-axis would be represented by

S : x = h; y = Lu; z =Wv 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 (A.10)

and the circle of radius R with axis along the z-axis and center h units up that
axis is represented by

S : x = Rv cos(2πu); y = Rv sin(2πu); z = h 0 ≤ u ≤ 1, 0 ≤ v ≤ 1
(A.11)

Note that in this last representation, it is the complete circle that is being
represented; not just the outside arc, which is a curve rather than a surface.
As v takes on different values, various circular curves are represented, and the
totality of these curves is the complete circle.
As was the case for curves, parametric-surface representation is not unique.

We will give the name “normalized” to those surface representations that, like
Eqs. (A.10) and (A.11), have the region Ru,v given by the square 0 ≤ u ≤ 1,
0 ≤ v ≤ 1. Indeed, by judicious choice of the functions x(u, v), y(u, v), and
z(u, v) it is possible to represent a very wide assortment of surfaces in this way.
For example, the NURBS surface representations widely used in commercial
CADCAM programs are of this type. Unless specifically stated otherwise, we
will restrict our attention to normalized surface representations in this book,
and from now on, the statement of the region Ru,v will be deleted as being
understood to be 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.
Surfaces can also be expressed in vector form, for which the general repre-

sentation is

S : r = x(u, v)bi+ y(u, v)bj+ z(u, v)bk or r = r(u, v) (A.12)

where r(u, v) = x(u, v)bi + y(u, v)bj + z(u, v)bk is a vector function of u and v.
In this form, the surface S has the following interpretation: let the tail of the
position vector be kept at the origin; then as u and v run continuously over Ru,v,
the tip of the position vector carves out the surface S in space. For example,
the circle of Eq. A.11 can be written as r = rc + Rv cos(2πu)bi+ Rv sin(2πu)bj,
where rc = (0, 0, h). Note that the general surface can now be given by the
compact expression: r = r(u, v).
As with curves, the various properties of the surfaces can be readily ex-

pressed. One can show that the vector J(u, v) given by

J(u, v) =
∂(y, z)

∂(u, v)
bi+ ∂(z, x)

∂(u, v)
bj+∂(x, y)

∂(u, v)
bk (A.13)

is always normal to the surface. In Eq. (A.13), terms like ∂(y,z)
∂(u,v) (called Jaco-

bians) have a special meaning:

∂(F,G)

∂(u, v)
=

¯̄̄̄
∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

¯̄̄̄
(A.14)
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in which each of F and G can be x(u.v) or y(u, v) or z(u, v). Therefore, a unit
normal is

n̂(u, v) = ±J(u, v)/ |J(u, v)| (A.15)

(The choice of the plus or minus sign will be discussed later.) The area dAS cut
out on the surface when u goes from u to u + du and v goes from v to v + dv
can be shown to be given by

dAS = |J(u, v)| dudv = J(u, v)dudv (A.16)

where J(u, v) = |J(u, v)|, is called here the “surface factor.” The area AS of
surface S is therefore given by

AS =

Z 1

0

Z 1

0

J(u, v)dudv (A.17)

In radiant analysis, it is important to recognize that every surface of practical
interest has in fact two sides. For example, the rectangle of Eq. (A.10) has
one side facing in the positive x-direction and another facing the negative x-
direction. And the circle of Eq. (A.11) has one side facing in the positive
z-direction and another facing the negative z-direction. If there were a small
source of radiant energy near the origin, it would irradiate only one side of each
of these two surfaces. It is clearly necessary to specify to which “surface side”
we are referring. It is to be noted that both surface sides appear to have the
same mathematical representation: r = r(u, v). They also have the same J(u, v)
and area.
But they will not be the same n̂(u, v) because the mathematical distinction

between the two surface sides will be carried in the normal. The convention
throughout this book will be that when located with its tip on the surface, the
normal points into the surface side of interest. That is, if we were to place our
finger on the surface side in question and then press it into the surface, n̂(u, v)
would be in the direction of the pressing force. For example, suppose of the two
surface sides represented by Eq. (A.11), we want to represent the one that faces
the origin. Then we could specify n̂(u, v) = +bk. And if we wanted to represent
the surface side facing away from the origin, we could specify n̂(u, v) = −bk.
Thus, the full specification of a surface side will require its parametric surface

representation r = r(u, v), plus the specification of the normal. The specification
of the normal can be carried in words or in a mathematical statement like
n̂(u, v) = −bk. Because of the great diversity of surfaces, no single method of
specifying the normal in words works for every configuration, but the normal
specification, once made, will automatically fix the choice of plus or minus sign
in Eq. (A.15).

A.2 Catalog of Surface Representations
The following is a list of suitable, normalized parametric representations of
various surface sides of interest for engineering radiant analysis. We also include
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below the properties of the surface, forestalling the need for the user of the
catalog to apply Eqs. (A.14)—(A.17). The user must, however, choose the plus
or minus sign on n̂(u, v) to indicate the surface side wanted. This choice can be
usually achieved by inspection. Where the choice may be difficult, guidelines
are given.
In several entries, the representation contains reference to a unit vector m̂,

that is stated to be any unit vector that is normal to another specified unit vec-
tor, say n̂. The role of m̂ is generally to fix an arbitrary reference direction from
which angles are measured. Ordinarily, a suitable choice for m̂ is (bi×n̂/ ¯̄̄bi× n̂¯̄̄),
but this choice is not suitable if n̂ happens to equal bi; in this case one should
choose (bj× n̂/ ¯̄̄bj× n̂¯̄̄).
1. Rectangle

Let rA, rB, and rC be the position vectors of any three vertices of the rectangle
such that rB and rC are at opposite corners. Then

r = rA + (rB − rA)u+ (rC − rA)v

n̂(u, v) = ± (rA − rB)× (rA − rC)
|(rA − rB)× (rA − rC)|

J(u, v) = |rA − rB| · |rA − rC | ; AS = |rA − rB| · |rA − rC |

2. Circle and Circle Sector

Let rc be the the position vector of the center of the circle, R be its radius, and
n̂ be the unit vector in direction of the desired normal to the circle. Then for
the circle,

r = rc +Ru [m̂ cos(2πv) + m̂× n̂ sin(2πv)]
n̂(u, v) = n̂; J(u, v) = 2πuR2; AS = πR2

where m̂ is any unit vector perpendicular to n̂.
For the sector of a circle, everywhere replace π by θ/2, where θ is the angle

of the sector and make m̂ lie along one of the radial arms of the sector.

3. Circular Cylinder (curved part only)

Let R be the cylinder’s radius and L be its axial length. Also, let â be the unit
vector in direction of the cylinder’s axis (pointing away from the base), and let
rc be the position vector of the center of the circle at the cylinder’s base. Then
the curved part of the cylinder is represented by

r = rc +R [m̂ cos(2πv) + m̂× â sin(2πv)] + âLu

n̂(u, v) = ± [m̂ cos(2πv) + m̂× â sin(2πv)]
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J(u, v) = 2πRL; AS = 2πRL

where m̂ is any unit vector perpendicular to â.
In the expression for n̂(u, v), choose the plus sign if the cylinder’s inside

surface is the surface side of interest; choose the negative sign if the cylinder’s
outside surface is the surface side of interest.

4. Sphere

Let the position vector of the center of the sphere be rc and let R be the radius
of the sphere. Then

r = rc +R
h
cos(2πu) sin(πv)bi+ sin(2πu) sin(πv)bj+cos(πv)bki

n̂(u, v) = ±
h
cos(2πu) sin(πv)bi+ sin(2πu) sin(πv)bj+ cos(πv)bki
J(u, v) = 2π2 sin(πv)R2; AS = 4πR

2

In the expression for n̂(u, v), choose the plus sign if the sphere’s inside surface
is the surface side of interest; choose the negative sign if the sphere’s outside
surface is the surface side of interest.

5. Triangle

Let the position vectors of the three vertices of the triangle be rA, rB, and rC ,
respectively. Then

r =(1− u)rA + urB + (rC − rB)uv

n̂(u, v) = ± (rA − rB)× (rA − rC)
|(rA − rB)× (rA − rC)|

J(u, v) = |(rA − rB)× (rA − rC)|u; AS = |(rA − rB)× (rA − rC)| /2

6. Circular Annulus and Sector of a Circular Annulus

Let Ro be the radius of the annulus’s outer circle and Ri be the radius of the
annulus’s inner circle. Also, let r1 be the position vector of the center of the
complete circle of which the annulus is a part, and let n̂ be the unit vector in
direction of desired normal to the annulus. Then, for the annulus

r = r1 + [Ri + (Ro −Ri)u] [m̂ cos(2πv) + m̂× n̂ sin(2πv)]

n̂(u, v) = n̂; J(u, v) = 2π [Ri + (Ro −Ri)u] (Ro −Ri); AS = π(R2o −R2i )
where m̂ is any unit vector perpendicular to n̂.
For the sector of an annulus, everywhere replace π by θ/2, where θ is the

angle of the sector, and make m̂ lie along one of the radial arms of the sector.



A.2. CATALOG OF SURFACE REPRESENTATIONS 311

7. Known Shape Moved to Another Position and Orientation

Let a surface that originally encloses the origin O be translated and rotated
to some new position in space. Suppose the parametric representation of the
surface when its in the original position is known to be

r = rold(u, v) = xold(u, v)bi+yold(u, v)bj+zold(u, v)bk
n̂(u, v) = n̂old(u, v) J(u, v) = Jold(u, v) AS = ASold

and we want to find its representation in its new position. Let us say that
when the surface is in its original position, it intersects the x-axis at location X
and the y-axis at location Y. Let the point on or inside the surface that was
at O have position vector rO after translation and let the position vectors of
the new positions of X and Y be rX and rY, respectively. Then the parametric
representation of the surface in its new position is given by

r = rO+xold(u, v)m̂+yold(u, v)p̂+zold(u, v)q̂

n̂(u, v) = n̂old(u, v)·(mx, px, qx)bi+n̂old(u, v)·(my, py, qy)bj+n̂old(u, v)·(mz, pz, qz)bk
J(u, v) = Jold(u, v); AS = ASold

where unit vectors m̂ = (mx,my,mz), p̂ = (px, py, pz) and q̂ = (qx, qy, qz) are
given by

m̂ = (rO − rX)/ |rO − rX | ; p̂ = (rO − rY)/ |rO − rY | ; and q̂ = m̂× p̂.

8. Ellipse

Let a and b be the ellipses’s major and minor axes. Let the ellipse be situated
on the x− y plane, centered at the origin. Then

r = au cos(2πv)bi+bu sin(2πv)bj
n̂(u, v) = ±bk; J(u, v) = 2πabu; AS = πab

Use Entry 7 above if the ellipse is in a different position.

9. Hemisphere and Other Parts of a Sphere

Let R be the hemisphere’s radius and let it be situated with its circular base on
the x-y plane with the center of the base at the origin. Then

r = R cos(2πu) sin(πv/2)bi+R sin(2πu) sin(πv/2)bj+R cos(πv/2)bk
n̂(u, v) = ±

h
cos(2πu) sin(πv/2)bi+ sin(2πu) sin(πv/2)bj+ cos(πv/2)bki
J(u, v) = π2 sin(πv/2)R2; AS = 2πR

2

Use Entry 7 if the hemisphere is in a different position. By replacing 2πu by θu
and/or πv by ϕv, one can generate various other parts of the sphere by letting
θ and ϕ take on various values.
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10. Truncated Right Circular Cone (Curved Surface)

Let the cone’s circular base be in the x-y plane, centered at the origin. Let Rb
be the radius of the base, Rt be the radius of the top, and h be its height. Then
the curved surface of the cone is given by

r =Rb

µ
1− uRb −Rt

Rb

¶hbi cos(2πv) +bj sin(2πv)i+ hubk
n̂(u, v) = ±

h
h cos(2πv)bi+ h sin(2πv)bj+ (Rb −Rt)bki /ph2 + (Rb −Rt)2

J(u, v) = 2πRb
p
h2 + (Rb −Rt)2

µ
1− uRb −Rt

Rb

¶
;

AS = π(Rb +Rt)
p
h2 + (Rb −Rt)2

Choose the plus sign in the n̂(u, v) expression to represent the inside of the
cone; choose the minus sign for the outside of the cone. Use Entry 7 above if
the cone is in a different position.

11. Torus

Let the torus have its axis along the z-axis and be centered at the origin. That
is, the intersection of the torus with the x-y plane consists of two circles with
centers at the origin. The radius of the inner circle is a− b (with b > a). The
radius of the outer circle is a+ b. Then the surface of the torus is given by

r = [a+ b cos(2πu)]
h
cos(2πv)bi+ sin(2πv)bji+ b sin(2πu)bk

n̂(u, v) = ±
h
cos(2πv) cos(2πu)bi+ cos(2πu) sin(2πv)bj+sin(2πu)bki

J(u, v) = 4π2b [a+ b cos(2πu)] ; AS = 4π
2ab

Choose the plus sign in the n̂(u, v) expression to represent the inside of the
torus; choose the minus sign for the outside of the torus. Use Entry 7 if the
torus is in a different position.

A.3 Application to Radiant Analysis

A.3.1 Solid Angle Evaluation

Equation 3.7 gives the formula for the evaluation of a solid angle subtended by
a body from some point P in space:

ωobject =

ZZ
S

ê(x, y, z) · n̂(x, y, z)
r(x, y, z)2

dA (A.18)
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For convenience, let the point P have position vector rP and let the object’s
surface be represented parametrically by r = r(u, v). The parametric repre-
sentation means that we can replace (x, y, z) by (u, v) to represent functional
dependence of a point on the surface; thus ê(x, y, z)→ ê(u, v) and r(x, y, z)→
r(u, v). Also, r(u, v) = |r(u, v)− rP | and ê(u, v) = (r(u, v)−rP )/ |r(u, v)− rP |,
and since dA = J(u, v)dudv, we obtain

ωobject =

Z 1

0

Z 1

0

ê(u, v) · n̂(u, v)
|r(u, v)− rP |2

J(u, v)dudv (A.19)

Figure A.1 shows a Mathcad worksheet of a solid angle calculation, this for
a circle side centered at coordinate (1,2,3) and directed with its normal along
(1,1,1); the solid angle calculated is that subtended from the point P having
coordinate (2,1,1). Such calculations can be readily performed using any of
the surfaces given in the above catalog, or indeed any other having a suitable
parametric representation.
Before proceeding further, however, we need to note that, as written, Eq.

(A.19) would yield negative values for ωobject for surface sides that face away
from point P. This is because the angle between the normal n̂(u, v) and ê(u, v)
becomes greater than π/2 for these surface sides. We consider this negative
answer to be an unrealistic result, and adopt the following convention: surface
sides that face away from the point P subtend a zero solid angle from P. More-
over, when surface sides face P over part of their area and face away from P
over other parts, the parts that face away from P contribute nothing to the
integral of Eqs. (A.18) and (A.19). While this rule may appear to be simply
a mathematical convention, in fact it is just what is needed to make physical
sense when similar calculations are made in radiant analysis.
To enforce this rule, Eq. (A.19) needs to be changed, and the needed change

can achieved be by the expedient of introducing the “positive-only” function,
which will be symbolized here by poso(x), defined as follows:

poso(x) =
x+ |x|
2

or poso(x) = xstep(x) (A.20)

where step is the Heaviside Step function. Either of these definitions make

poso(x) = x when x > 0; poso(x) = 0 when x ≤ 0 (A.21)

and both are readily programmed. So the proper expression for ωobject is

ωobject =

Z 1

0

Z 1

0

poso (ê(u, v) · n̂(u, v))
|r(u, v)− rP |2

J(u, v)dudv (A.22)

Inspection of the Mathcad worksheet given in Fig. A.1 shows that the poso
function has already been incorporated there.
An example of a surface side that faces the point P in some parts and faces

away from P in other parts is the outside surface of a sphere when the point P
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is outside the sphere. The points on the sphere nearest P do face P, while the
points on the other side face away from it. The dividing line between these sets
of points is a circle on the sphere that contains all the points for which a line
running from the point to P is tangent to the sphere. By elementary geometric
calculations, one can show that the solid angle subtended by a sphere of radius
R and with center distance rcc from P is given by ωobject = 2π(1−

p
1−R2/r2cc).

The student is encouraged to evaluate ωobject for spheres using both this formula
and by Mathcad, replacing the circle representation used in Fig. A.1 to a
suitable parametric representation for the sphere.

A.3.2 Point Form-Factor Evaluation

In Eq. (5.18), the point form factor to surface Aj from some elemental area dA1
with inward normal n̂1 and located at r1 is given by Eq. (5.20):

Fd1−j =
ZZ

Sj

{n1 · [−ê(rj , r1)]} · [ê(rj , r1) · n̂(rj)]
π |rj−r1|2

dAj

Reexpressing this in terms of the parametric representation gives

Fd1−j =
Z 1

0

Z 1

0

poso (n̂1 · [−ê(u, v)]) · poso [ê(u, v) · n̂(u, v)]
π |r(u, v)− r1|2

J(u, v)dudv

(A.23)
Note that we have also introduced the poso function in Eq. (A.23); with n̂1 ·
[−ê(u, v)] as argument, this will ensure that if some part of Aj falls behind dA1,
then it does not contribute to the radiant flux on dA1.
Point form factors can, therefore, be determined in the same way as solid

angles. The only additional piece of information that has to be provided is
the direction of the normal n̂1. Figure A.1 includes in its Addendum 1 the
calculation of the point form factor for n1 = (0, 0, 1), and for Aj being the same
surface as had been used in the previous part of the figure. Similar calculations
can clearly be made for other surfaces and for other locations and orientations
of dA1.

A.3.3 Gaseous Point Form-Factor Evaluation

In Eq. (5.24), the gaseous point form factor to surface Aj from some elemental
area dA1 with inward normal n̂1 and located at r1 is given by the surface integral

Gd1−j(a) =
ZZ

Sj

exp(−ar(x, y, z)) {n̂1 · [−ê(x, y, z)]} · [ê(x, y, z) · n̂(x, y, z)]
πr(x, y, z)2

dA

(A.24)
Reexpressing in terms of the parametric representation gives
Gd1−j(a) =Z 1

0

Z 1

0

e−a|r(u,v)−r1|poso(n̂1 · [−ê(u, v)]) · poso (ê(u, v) · n̂(u, v))
π |r(u, v)− r1|2

J(u, v)dudv

(A.25)
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Thus, for any specified value of a, gaseous point form factors can be determined
in the same way that Fd1−j was calculated in the previous section. Figure A.1
includes in its Addendum 2 the calculation of the gaseous point form factor for
a = 0.5, for the same geometric circumstances as before. Similar calculations
can clearly be made for other surfaces, other values of a, and other locations
and orientations of dA1.

A.3.4 Form-Factor Evaluation

Let the two surfaces involved in the form factor be denoted P and Q, represented
by subscripts p and q, respectively. Then from Eq. (5.30), we have

Fp−q =

1

Ap

ZZ
Sp

ZZ
Sq

poso (n̂p(rp) · [−ê(rp, rq)]) · poso (ê(rp, rq) · n̂q(rq))
π |rp − rq|2

dApdAq

(A.26)
We will need parameters u and v for each surface. Let the parameters for surface
P be up and vp, and those for Q be uqand vq. Further, to arrive at compact
expressions, we adopt the following conventions:

1. Let u represent the two component vector (u, v); that is, u is the position
vector of a point in the u-v plane. Thus, we have up=(up, vp) for surface
P and uq=(uq, vq) for surface Q.

2. Let surface P be represented parametrically by r = rp(up, vp) = rp(up),
and Q be represented parametrically by r = rq(uq, vq) = rq(uq).

3. Let the area-factor J(u) be Jp(up) for P and Jq(uq) for Q, and the local
unit normals be n̂p(up) for P and n̂q(uq) for Q.

4. In double integrals, let dudv be written as du; thus dup = dupdvp and
duq = duqdvq. Also, letZ 1

0

Z 1

0

be written as
ZZ 1

0

With this nomenclature, Eq. (A.26) can be expressed parametrically by

Fp−q =
ZZ 1

0

ZZ 1

0

H(up,uq)

Apπ |rp(up)− rq(uq)|2
Jp(up)Jp(uq)dupduq (A.27)

where

H(up,uq) = poso (n̂p(up)· [−ê((up,uq)]) poso (n̂q(uq)·ê(up,uq)) (A.28)

Figure A.2 shows a sample calculation of Fp−q for the case where surface P
is a 2×1 rectangle in the vertical plane y = −1, having vertices (1,−1, 0),
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(−1,−1, 0), (1,−1, 1), (−1,−1, 1), and Q is a circle of radius 1 in the x-y plane,
centered at the origin.
If evaluating the relevant quadruple integrals is taking an inordinate amount

of time, as it sometimes does, one can use Monte Carlo integration. Monte Carlo
integration is well suited for multiple integrals. Addendum 1 in Fig. A.2 shows a
scheme for evaluating the quadruple integral using Monte Carlo integration. For
Monte Carlo integration, the accuracy depends on the number NR of random
numbers used; the accuracy achieved generally varies as 1/

√
NR. Experience

has shown that for the quadruple integrals arising in form factor evaluations,
answers are typically within about 15% of the true one when using NR = 1000,
within about 4% when using NR = 10, 000, and within about 1% when using
NR = 100, 000. The latter is often accurate enough for most engineering work,
and the Monte Carlo quadruple integration using NR = 100, 000 takes only a
fraction of the time taken by the Mathcad integrator.

A.3.5 Gaseous Form-Factor Evaluation

The gaseous form-factor function can be shown to be given by

Gp−q(a) =
ZZ 1

0

ZZ 1

0

e−a|rp(up)−rq(uq)|H(up,uq)
Apπ |rp(up)− rq(uq)|2

Jp(up)Jp(uq)dupduq (A.29)

whereH(up,uq) is as defined by Eq. (A.28). The Addendum 2 of Fig. A.2 shows
a sample calculation of a gaseous form-factor function, using Monte Carlo inte-
gration. Here, surfaces P and Q are the same surfaces as the sample calculation
in the previous section, and a has been set equal to 0.5.

A.4 Representing an Entire Enclosure
Sometimes we seek a parametric representation of the entire surface of an en-
closed region, that is, of an enclosure. The interior surface of a sphere would
be one such enclosure, but more often the enclosure is not a single geometric
shape like a sphere, but is made up of several geometric shapes. We may know
the parametric representation for each shape, but we seek the representation for
the complete enclosure.
For example we may wish a parametric representation for the interior surface

of a closed hemisphere. The hemisphere is made of two geometric parts: the
half of a sphere and the circular base. We can use Entry 9 of the catalog to
represent the first and Entry 2 to represent the second. But now we want a
parametric representation for the entire surface. We can do this making the
r(u, v) function for the entire enclosure a piecewise function. Let r = r1(u1, v1)
and r = r2(u2, v2) be the representations of surfaces 1 and 2 respectively. Then
we can define the r(u, v) function for the entire surface by

r(u, v) = r1(u, v) for 0 ≤ u ≤ 1
and r(u, v) = r2(u− 1, v) for 1 ≤ u ≤ 2 (A.30)
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We make the domain for the enclosure be 0 ≤ u ≤ 2; 0 ≤ v ≤ 1, so the
enclosure’s representation is not normalized. If we think about what happens
when u and v cover their entire domains, we see that indeed the entire enclosure
is accounted for. Surface 1 is accounted for when u and v extend over 0 ≤ v ≤ 1
and 0 ≤ u ≤ 1, and surface 2 when they extend over 0 ≤ v ≤ 1 and 1 ≤ u ≤ 2.
This example can be readily generalized to apply to enclosures with any

number of geometric shapes or parts. If there are Ω parts represented individu-
ally by r = r1(u1, v1), r = r2(u2, v2)...and r = rΩ(uΩ, vΩ), respectively, then the
enclosure would be represented by

r = r(u, v) 0 ≤ v ≤ 1; 1 ≤ u ≤ Ω (A.31)

where r(u, v) is defined by

r(u, v) = r1(u, v) for 0 ≤ u ≤ 1
r(u, v) = r2(u− 1, v) for 1 ≤ u ≤ 2
r(u, v) = r3(u− 2, v) for 2 ≤ u ≤ 3

...

r(u, v) = rΩ (u− (Ω− 1), v) for Ω− 1 ≤ u ≤ Ω (A.32)

A similar set of equations would apply for the unit normal n̂(u, v) to the surface
and the area factor J(u, v) for the enclosure. Thus, for example, n̂(u, v) =
n3(u− 2, v) and J(u, v) = J3(u− 2, v) whenever 2 ≤ u ≤ 3, it being understood
that n3(u, v).and J3(u, v) are, respectively, the unit normal and area factor for
part 3.
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Figure A.1: Mathcad worksheet illustrating the determination of a solid angle, a point
form factor, and a gaseous point form factor using Mathcad. The example considers
the surface to be a circle in 3-space.
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Figure A.2: Mathcad worksheet illustrating the determination of form factors and
gaseous form factor using numerical integration and the parametric representation of
surfaces
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