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Optimal experimental design (OED) seeks experiments expected to yield the most useful data for some purpose. In
practical circumstances where experiments are time-consuming or resource-intensive, OED can yield enormous sav-
ings. We pursue OED for nonlinear systems from a Bayesian perspective, with the goal of choosing experiments that
are optimal for parameter inference. Our objective in this context is the expected information gain in model parame-
ters, which in general can only be estimated using Monte Carlo methods. Maximizing this objective thus becomes a
stochastic optimization problem. This paper develops gradient-based stochastic optimization methods for the design of
experiments on a continuous parameter space. Given a Monte Carlo estimator of expected information gain, we use in-
finitesimal perturbation analysis to derive gradients of this estimator. We are then able to formulate two gradient-based
stochastic optimization approaches: (i) Robbins-Monro stochastic approximation, and (ii) sample average approxima-
tion combined with a deterministic quasi-Newton method. A polynomial chaos approximation of the forward model
accelerates objective and gradient evaluations in both cases. We discuss the implementation of these optimization meth-
ods, then conduct an empirical comparison of their performance. To demonstrate design in a nonlinear setting with
partial differential equation forward models, we use the problem of sensor placement for source inversion. Numerical
results yield useful guidelines on the choice of algorithm and sample sizes, assess the impact of estimator bias, and
quantify tradeoffs of computational cost versus solution quality and robustness.

KEY WORDS: stochastic approximation, sample average approximation, polynomial chaos, infinitesimal
perturbation analysis, optimal experimental design, mutual information, Bayesian inference

1. INTRODUCTION

Experimental data play a crucial role in the developmentodleis—and the advancement of scientific understanding—
across a host of disciplines. Some experiments are moralubah others, however, and a careful choice of exper-
iments can translate to enormous savings of time and finamesaurces. Traditional experimental design methods,
such as factorial and composite designs, are largely usbdwasstics for exploring the relationship between input
factors and response variabl&ptimal experimental design, on the other hand, uses a model to gluédehoice

of experiments for a particular purpose, such as paramefenence, prediction, or model discrimination. Optimal
design has seen extensive development for linear modetsvartwith Gaussian distributions [1]. Extensions to non-
linear models are often based on linearization and Gauagigroximations [2—4], as analytical results are otherwise
impractical or impossible to obtain. With advances in cotapianal power, however, optimal experimental design for
nonlinear systems can now be tackled directly using nuraksimulation [5-11].

This paper pursues nonlinear experimental design from a8agy perspective (e.g., [12]). The Bayesian statistical
approach [13, 14] provides a rigorous foundation for infieefrom noisy, indirect, and incomplete data and a natural
mechanism for incorporating physical constraints andrbgineous sources of information. We focus on experiments
described by a continuous design space, with the goal ofssthgexperiments that are optimal for Bayesian parameter
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inference. A useful objective function for this purposéiséxpected information gain model parameters [15, 16]—
or equivalently, thenutual informatiorbetween parameters and observables, conditioned on tlymdesiables. This
objective can be derived in a decision theoretic framewask)g the Kullback-Leibler divergence from posterior to
prior as a utility function [4]. From the numerical perspeet however, it is a complicated quantity. In general, itsthu
be approximated using a Monte Carlo method [6, 17]. Consgtyi@nly noisy estimates of the objective function
are available and the optimal design problem becomes aagticloptimization problem.

There are many approaches for solving continuous optimizaroblems with stochastic objectives. While some
do not require the direct evaluation of gradients (e.g.deMead [18], Kiefer-Wolfowitz [19], and simultaneous
perturbation stochastic approximation[20]), other ailfpons can use gradient evaluations to great advantagedBroa
these algorithms involve either stochastic approximaf®f) [21] or sample average approximation (SAA) [22],
where the latter approach must also invoke a gradient-testedministic optimization algorithm. Hybrids of the two
approaches are possible as well. In either case, for maksgebexperimental design, one must employ gradients of the
information gain objective described above. This objecfimnction itself involves nested integrations over pdssib
model outputs and over the input parameter space, wheredbelrautput may be a functional of the solution of a
partial differential equation. In many practical cases, todel may be essentially a black box; while in other cases,
even if gradients can be evaluated with adjoint methodsigutsie full model to evaluate the expected information
gain or its gradient is computationally prohibitive. Pi@ws work [11] has addressed these difficulties by constrgcti
polynomial surrogates for the the model output, i.e., poiyial chaos expansions [23-29] that capture dependence
on both uncertain parameters and design variables.

The main contributions of this paper are as follows. Firg,sliow how to use infinitesimal perturbation analysis
to derive gradients of a Monte Carlo estimator of the expkotéormation gain. When the estimator incorporates a
polynomial surrogate, we show how this surrogate can belyeadended to provide analytical gradient estimates. We
then conduct a systematic empirical comparison of two graebased stochastic optimization approaches for nonlin-
ear experimental design: (1) Robbins-Monro (RM) stoclkagbiproximation, and (2) sample average approximation
combined with a deterministic quasi-Newton method. Thearison is performed in the context of a physics-based
sensor placement application, where the forward modelergdy a partial differential equation. From the numerical
results, we are able to assess the impact of estimator bitmaceuseful guidelines on the choice of algorithm and
sample sizes, and quantify tradeoffs of computationalwastus solution quality and robustness.

The RM algorithm [30] is the original and perhaps most widedgd stochastic approximation method, and has
become a prototype for many subsequent algorithms. It wegohn iterative update that resembles steepest descent,
except that it uses stochastic gradient information. Sarapérage approximation (SAA) (also known as the retro-
spective method [31] or the sample-path method [32]) is aemecent approach, with theoretical analysis initially
appearing in the 1990s [22, 32, 33]. Convergence rates anHasitic bounds, although useful, do not necessarily re-
flect empirical performance under finite computational veses and with imperfect numerical optimization schemes.
To the best of our knowledge, extensive numerical testin§44 has focused on stochastic programming problems
with special structure (e.g., linear programs with disedtsign variables) [34—38]. While numerical improvemémts
SAA have seen continual development (e.g., estimatorstohajity gap [39, 40] and sample size adaptation [41, 42]),
the practical behavior of SAA in more general optimizatiettiags is largely unexplored. The numerical assessment
of SAA conducted here, in a nonlinear and continuous vagiaelsign setting, is thus expected to be of practical
interest.

SAA is frequently compared to stochastic approximationhods such as RM. For example, [43] suggests that
SAA is more robust than SA because of sensitivity to step sim#ce in the latter. On the other hand, variants of
SA have been developed that, for certain classes of prolfeigs [44]), reach solution quality comparable to that of
SAA in substantially less time. The comparison of SA and SAésgnted here focuses on their performance in the
Bayesian experimental design problem. We do not aim to ifyeme approach as superior to the other; instead, we
will simply illustrate the differences between the two aitfums in this context and provide some selection guidsline
based on their properties.

This paper is organized as follows. Section 2 introducesr@tBayesian experimental design (Section 2.1)
and extracts the underlying stochastic optimization mob(Section 2.2), then presents the RM (Section 2.2.1) and
SAA-BFGS (Section 2.2.2) algorithms. The challenge of @atihg gradient information appropriate to each of these
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algorithmsis described in Section 2.3. Section 3 and Sedtitescribe how to obtain gradients (or gradient estimptors
for the experimental design objective using polynomialashaxpansions and infinitesimal perturbation analysis.
Section 5 then analyzes the numerical performance of RM &#dBFGS on an optimal sensor placement problem
involving contaminant diffusion. Conclusions on the algans and the relative strengths of SA and SAA for optimal
experimental design are provided in Section 6.

2. OPTIMAL BAYESIAN EXPERIMENTAL DESIGN
2.1 Background

We are interested in choosing the “best” experimefitsm a continuously parametrized design space, for theqmarp
of inferring model parameters from noisy and indirect olsaBons. In other words, we seek experiments that are
optimal for parameter inference (in a sense to be precissiped below), with inference performed in a Bayesian
setting. In the problems considered here, the mean obgarsatre nonlinear functions of the model parameters, and
the observations and model parameters are continuousraveatiables.

Bayes' rule describes the parameter update process:

fY\@,d(Y|9a d)f®|d(9|d)
fyja(yld)

Here © represents the uncertain parameters of intefésthe observations, and the design variables. Like the
observations and parameters, the design parameteoati@uous Also fgq is the prior densityfy|e.q is the
likelihood function, fe|v q is the posterior density, anfl, 4 is the evidence. It is reasonable to assume that prior
knowledge or® does not vary with the design choice, leading to the simpliiin fgq(0|d) = fe(0).

Taking the decision theoretic approach proposed by Linflléy 16], we use the Kullback-Leibler (KL) diver-
gence [45, 46] from the posterior to the prior as a utilitydtion, and take its expectation under the prior predictive
distribution of the data to obtain axpected utility/ (d):

fery,a(@ly,d)
/_y /H fory.a(®ly.d)ln [f(_)—(e)} 06 fy|a(yld) dy @)

= Ey|d [DKL (f@)|Y,d('|Yvd)||f9('))} :

HereH is the support offe(0) and) is the support offy|q4(y|d). Because the observatid cannot be known
before the experiment is performed, taking the expectatier the prior predictivefy q lets the resulting utility
function reflect the information gaion averageover all anticipated outcomes of the experiment. The Kledjence
may be understood as information gain: larger KL divergdrama posterior to prior implies that the da¥adecrease
entropy in® by a larger amount, and hence are more informative for paearitderence. The expected utility(d)
is thus theexpected information gaidue to an experiment performed at conditiahswhich is equivalent to the
mutual informationbetween the paramete@sand the observables conditioned ond. A more detailed derivation
and discussion can be found in [11].

Typically, the expected utility in (2) has no closed formégruf the predictive mean of the data is, for example,
a polynomial function oB). Instead, it must be approximated numerically. By apy@ayes’ rule to the quantities
inside and outside the logarithm in (2), and then introdgditonte Carlo approximations for the resulting integrals,
we obtain the nested Monte Carlo estimator proposed by Rjan |

fo|y.a(@ly,d) =

(1)

U(d)

N 1
i)|ali 1 i )
U(d) ~ Uy u(d, 05,y:) = Z In [fY|®d ()|9()7d)}—1n MZfY\G),d )|9 R V1 I SR )
i=1 j=1

These design choices will be made all-at-once; this setaggponds to batch apen-loopdesign. In contrast, sequential or
closed-loopdesign allows the results of one set of experiments to glidaéxt set. Rigorous approaches to optiolased-loop
design are more challenging, and will not be tackled in thisqp.
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where@, = {e“)} U {é(i"j)}, i=1...N,j=1...M,areiid. samples from the prigip; andy, = {y¥},

i = 1...N, are independent samples from the IikeIihog‘q,sfz@VdHe(i), d). The variance of this estimator is ap-
proximately A(d)/N + B(d)/NM and its bias is (to leading ordef)(d)/M [6], where A, B, andC are terms
that depend only on the distributions at hand. While thevesttr Uy, is biased for finitel, it is asymptotically
unbiased.

Finally, the expected utility must be maximized over theigiespaceD to find the optimal experiment(s):

d* =arg max U(d). (4)

SinceU can only be approximated by Monte Carlo estimators suoﬁmgf, optimization methods for stochastic
objective functions are needed.

2.2 Stochastic Optimization

In this section we describe two gradient-based stochaptim@ation approaches: Robbins-Monro (RM) stochastic
approximation, and sample average approximation with tteyden-Fletcher-Goldfarb-Shanno method. Both ap-
proaches require some flavor of gradient information, bey tho not use the exact gradientléfd). Calculating the
latter is generally not possible, given that we only have atdcCarlo estimator (3) df (d).

For simplicity, in this section only (Section 2.2), we wils& a more generic notation to describe the stochas-
tic optimization problem at hand. This will allow the essahideas to be presented before tackling the additional
complexities of the expected information gain estimatanab The problem to be solved is of the form

xt = argarvréig {h(gc) =Ew {ﬁ(w, W)} } , (5)

wherez is the design variabld} is the (generally design-dependent) “noise” random vabeimdﬁ(:z:, w) IS an
unbiased estimator of the unavailable objective function).

2.2.1 Robbins-Monro (RM) Stochastic Approximation
The iterative update of the RM method is

Tpt1 = T — apg(Tp, '), (6)

wherek is the iteration index ang(zy,w’) is an unbiased estimator of the gradient (with respect)tof i(x)

evaluated aty,. In other wordsEy- [§(xz, W')] = V.h(z), butj is not necessarily equal 4. Also, W’ and W
may, but need not, be related. The gain sequepahould satisfy the following properties:

Zak:oo and Zaﬁ<oo. (7
k=0 k=0

One natural choice, used in this study, is the harmonic sfepsequence;, = /k, wheref is some appropriate
scaling constant. For example, in the diffusion problem@dti®n 5,3 is chosen to be 1.0 since the design space is
[0, 1]2. With various technical assumptions g@andg, it can be shown that RM converges to the exact solution of (5)
almost surely [21].

Choosing the sequenaeg is often viewed as the Achilles’ heel of RM, as the algoritaérformance can be very
sensitive to step size. We acknowledge this fact and do nenhdiay the difficulty of choosing an appropriate gain
sequence, but we will try to show that there exist logicalrapphes to selecting, that yield reasonable performance.
More sophisticated strategies, such as search-then-+apnearning rate schedules [47], adaptive stochasticsitep
rules [48], and iterate averaging methods [21, 49], havae Heeeloped and successfully demonstrated in applications
For simplicity, however, we will use only the harmonic stéggessequence in this paper.
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We will also use relatively simple stopping criteria for tR# iterations: the algorithm will be terminated when
changes iy, stall (e.g. ||z, — x1—1]| falls below some designated tolerance for five successvatibns) or when a
maximum number of iterations has been reached (e.g., idas in the numerical experiments of Section 5.2.2.)

2.2.2 Sample Average Approximation (SAA)

Transformation to design-independent noise. The central idea of sample average approximation is to ethe
stochastic optimization problem to a deterministic prabl®y fixing the noise throughout the entire optimization
process. In practice, if the noi$E is design-dependent, it is first transformed to a desigeqeddentrandom variable
by moving all the design dependence into the funcﬁo(An example of this transformation is given in Section 4.)
The noise variables at differemtthen share a common distribution, and a common set of réialiais employed at
all values ofz.

Such a transformation is always possible in practice, siheeandom numbers in any computation are funda-
mentally generated from uniform random (or really pseuddaam) numbers. Thus one can always transférm
back into these uniform random variables, which are of aimdependent of.? For the remainder of this section
(Section 2.2.2) we shall, without loss of generality, assuhatlV is independent af.

Reduction to a deterministic problem. SAA approximates the true optimization problem in (5) with
. 1 M.
Ty _arggéig{h]v(x,ws) = NZIh(x,wz)} , (8)

wherez, and BN(izs, w,) are the optimal design and objective values under a paaticdt of NV realizations of
the random variabléV, w, = {wi}f\’zl. The sameset of realizations is used for different valuesaotiuring the
optimization process, thus making the minimization proble (8) deterministic. (One can view this approach as an
application of common random numbers.) A deterministiégrojiation algorithm can then be chosen to findas an
approximation tac*.

Estimates ofi(i,) can be improved by usin@N/(fcs,ws/) instead ofﬂN(fcs, Wg ), WhereﬁN/(:Es,ws/) is com-
puted from a larger set of realizations: = {wj}f’zll with N’ > N, in order to attain a lower variance. Finally,
multiple (sayT’) optimization runs are often performed to obtain a samgdistribution for the optimal design values
and the optimal objective values, i.¢%, andhy (it,wt), fort = 1...T. The setav are independently chosen for
each optimization run, but remain fixed within each run. Uragtain assumptions on the objective function and the
design space, the optimal design and objective estimateAMgenerally converge to their respective true valimes
distributionat a rate ofi /v/N [22, 33]3

For the solution of a particular deterministic problerfy stochastic bounds on the true optimal value can be
constructed by estimating the optimality ga@:* ) — h(z*) [39, 40]. The first term can simply be approximated using

the unbiased estimatény (i, w',) sinceEy ., [HN/(:E?;, WS/)} = h(z%). The second term may be estimated using

the average of the approximate optimal objective valuessadhel replicate optimization runs (based ef, rather
thanw?,)):

T
B 1 S,
hn = T ;:1 hn (g, wy). 9

20ne does not need to go all the way to the uniform random Vasahny higher-level “transformed” random variable, agjlas

it remains independent af, suffices.

3More precise properties of these asymptotic distributideysend on properties of the objective and the set of optiolations
to the true problem. For instance, in the case of a singleptimam z*, the SAA estimates v (zs,-) converge to a Gaussian
with variance Vay [h(z*, W)]/N. Faster convergence to the optimal objective value may tar@sl when the objective satisfies
stronger regularity conditions. The SAA solutiofis are not in general asympotically normal, however. Furtleeendiscrete
probability distributions lead to entirely different asgtatics of the optimal solutions.
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This is a negatively biased estimator and hence a stocHestér bound oni(x*) [39, 40, 50]*° The difference
hn (2%, wt,) — hy is thus a stochastic upper bound on the true optimality/gag) — (z*). The variance of this
optimality gap estimator can be derived from the Monte Catémdard error formula [34]. One could then use the
optimality gap estimator and its variance to decide whethere runs are required, or which approximate optimal
designs are most trustworthy.

Pseudocode for the SAA method is presented in Algorithm thistpoint, we have reduced the stochastic opti-
mization problem to a series of deterministic optimizatwablems; a suitable deterministic optimization algarith
is still needed to solve them.

Algorithm 1: SAA method in pseudocode.

Set optimality gap toleranagand number of replicate optimization rufi's
t=1,

while optimality gap estimate- n andt < T do

Sample the seb! = {w!}Y ;;

Perform a deterministic optimization run and fis{d(see Algorithm 2);
Sample the larger set!, = {w! j-Vz/l whereN’ > N;

N
Computeh . (%, w!,) = % > h(ahwh);
j=1

Estimate the optimality gap and its variance;
t=t+1,

end
Output the set$i! }7_, and{hy (2!, w’, )}, for post-processing;

BFGS method. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method i&&]gradient-based method for solv-
ing deterministic nonlinear optimization problems, wideked for its robustness, ease of implementation, and ef-
ficiency. It is a quasi-Newton method, iteratively updatarg approximation to the (inverse) Hessian matrix from
objective and gradient evaluations at each stage. Psedddonthe BFGS method is given in Algorithm 2. In the
present implementation, a simple backtracking line se&retsed to find a stepsize that satisfies the first (Armijo)
Wolfe condition only. The algorithm can be terminated adony to many commonly used criteria: for example,
when the gradient stalls, the line search stepsize fallswbal prescribed tolerance, the design variable or function
value stalls, or a maximum allowable number of iteration®lpjective evaluations is reached. BFGS is shown to
converge super-linearly to a local minimum if a quadratigldaexpansion exists near that minimum [51].

The limited memory BFGS (L-BFGS) [51] method can also be ushdn the design dimension becomes very
large (e.g., more thar0?), such that the dense inverse Hessian cannot be storedidypli

2.3 Application to Optimal Design

The main challenge in applying the aforementioned sto@haptimization algorithms to optimal Bayesian experi-
mental design is the lack of readily available gradientiinfation. For RM, we need ambiased estimator of the
gradientof the expected utility, i.ej in (6). For SAA-BFGS, we need thgradient of the finite-sample Monte Carlo
approximatiorof the expected utility, i.e Viy (-, w!).

We address these needs by introducing two concepts:

“Short proof from [50]: For any: € X, we have thaEy, [iLN(CC7WS):| = h(z), and thathy (z, wt) > ming ey hy (', wt).

Thenh(z) = Eu, [EN(x,WS)] > Ew, [minz/ex izN(x’,Ws)] = Ew, BN(g’sg,Ws)] =Ew, [hn].
5The bias decreases monotonically wiXh[39].
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Algorithm 2: BFGS algorithm in pseudocode. In this contéw},(x, wt) is the deterministic objective function
we want to minimize (as a function a@j.
Initialize starting pointzg, inverse Hessian approximatidfy, gradient termination toleranee
Initialize any other termination conditions and paramster
k=0;
while ||[Vhy (zx, wt)|| > e and other termination conditions are not nt
Compute search directign, = —HkVBN(a:k, wt);
Find acceptable stepsizg, via line search;
Update positiorr, 1 = xx + apk;
Define vectorsy, = xx41 — zx andug = Viy (zps1, wt) — Vhy (@p, wl) ;

T T T
Update inverse Hessian approximatiéip, ; = (I _ Sk ) H;, (I _ Uk ) + S;Sk ;

T T !
Sp. Uk Uy, Sk Sp. Uk

k=Fk+1;
end
Outputzl = zy;

1. A simple surrogate model, basedmolynomial chaogxpansions (see Section 3), replaces the often computa-
tionally-intensive forward model. The purpose of the sgate is twofold. First, it allows the nested Monte
Carlo estimator (3) to be evaluated in a computationallgtatle manner. Second, its polynomial form allows
the gradient of (3),VEN(~,w§), to be derived analytically. These gains come at the expehsgroducing
additional error via the polynomial approximation of thegaral forward model, however. In other wordgyen
a surrogate for the forward model and the resulting expdnfedmation gain, we can derive exact gradients of
a Monte Carlo approximation of this expected informatiomgand use these gradients in SAA.

2. Infinitesimal perturbation analysisee Section 4) applied to (2), along with the estimator )ra(81 the poly-
nomial surrogate model, allows the analytical derivatibarounbiased gradient estimatpras required for the
RM approach.

3. POLYNOMIAL CHAOS SURROGATES
3.1 Background

This section introduces the first of two computational tased to address the challenges described in Section 2.3.
Polynomial expansions will be used to mitigate the cost péeged forward model evaluations. Later (see Section 4)
they will also be used to help evaluate appropriate gradidotmation for stochastic optimization methods.
Mathematical models of the experiment enter the inferendedasign formulation through the likelihood function
Jy|e.a- For example, a simple likelihood function might allow far additive discrepancl between experimental
observations and model predictions
Y =G(0,d) +E. (20)

HereG (6, d) is the “forward model” describing the experiment; it is adtion that maps both the design variables
and the parameters into the data space. The discrefamsyften taken to be a Gaussian random variable, but is
by no means limited to this; we will uség to denote its probability density. Computationally inteasforward
models can render Monte Carlo estimation of the expecteafrnmdtion gain impractical. In particular, drawing a
sample fromfy e 4(y|0,d) requires evaluatings at a particula®, d). Evaluating the densityy e a(y|0,d) =
fe(y — G(0,d)) again requires evaluating-.

To make these calculations tractable, one would like toaegsk with a cheaper “surrogate” model that is accu-
rate over the entire prior suppditand the entire design spafe Many options exist, ranging from projection-based
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model reduction [52, 53] to spectral methods based on patyalachaos (PC) expansions [23-29, 54]. The latter ap-
proaches do not reduce the internal physics of the detestiimiodel; rather, they exploit regularity in the depermen
of model outputs on uncertain input parameters and desigables.

Polynomial chaos has seen extensive use in a range of enigimapplications (e.g., [55-58]) including parameter
estimation and inverse problems (e.g., [59—-61]). Morenmtggit has also been used in open-loop optimal Bayesian
experimental design [10, 11], with excellent accuracy amdtiple order-of-magnitude speedups over direct evalua-
tions of forward model. Unlike the present work, however; earlier study [11] used only gradient-free stochastic
optimization methods (Nelder-Mead and simultaneous pestion stochastic approximation).

3.2 Formulation

Any random variableZ with finite variance can be represented by an infinite series

Z=> a;%(Z,5,...), (11)
li|=0

wherei = (i1,142,...), i; € Np, is an infinite-dimensional multi-inde| = ¢; + i2 + . .. is thel; norm;a; € R are
the expansion coefficients; are independent random variables; and

Ui(E1,5,..) = [[¥i, (E)) (12)
j=1

are multivariate polynomial basis functions [25]. Hérg is an orthogonal polynomial of ordéy in the variablez;,
where orthogonality is with respect to the density=of

Ez [ (2)n(S)] = /F Do (E) 0 (E) F2(E) dE = BnEz [0, (E)] . (13)

andF is the support off=(&,). The expansion (11) is convergent in the mean-square sé@ke~pr computational
purposes, the infinite sum in (11) must be truncated to sonite Btochastic dimension, and a finite number of
polynomial terms. A common choice is the “total-order” teation|i| < p, but other truncations that retain fewer
cross terms, a larger number of cross terms, or anisotropygrie dimensions are certainly possible [54].

In the optimal Bayesian experimental design context, thdehoutputs depend on both the parameters and the
design variables. Constructing a new polynomial expanatogach value ofl encountered during optimization is
generally impractical. Instead, we can construsitglePC expansion for each component@fdepending jointly on
© andd [11]. To proceed, we assign one stochastic dimension to eatiponent of® and one to each component
of d. Further, we assume an affine transformation between eaudpament ofd and the corresponding;; any
realization ofd can thus be uniquely associated with a vector of realizatign Since the design variables will
usually be supported on a bounded domain (e.qg., inside sgpeg-hectangle), the correspondifigare endowed with
uniform distributions. The associated univaridte are thus Legendre polynomials. These distributions atfelgt
define a uniform weight function over the design spdte¢hat governs where th&2-convergent PC expansions
should be most accurate.

Constructing the PC expansion involves computing the eneffisa;. This computation generally can proceed
via two alternative approaches, intrusive and noninteusihe intrusive approach results in a new system of equsation
that is larger than the original deterministic system, baeeds be solved only once. The difficulty of this latter step
depends strongly on the character of the original equatilomsever, and may be prohibitive for arbitrary nonlinear

%In the present context, it is appropriate to vidvas a deterministic design variable. Since the stochastimigation algorithms
used later all involve some level of randomness, howeverdthialues encountered during optimization may also be vievged a
realizations from some probability distribution. Thistdisution, if known, could replace the uniform distributi@nd define a
more efficient weighted.? norm; however, it is almost always too complex to extractracfice.
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systems. The nonintrusive approach computes the exparmédiicients by directly projecting the quantity of interes
(e.g., the model outputs) onto the basis functiinsOne advantage of this method is that the deterministiesaian
be reused and treated as a black box. The deterministiceprotlen needs to be solved many times, but typically at
carefully chosen parameter and design values. The noeimrapproach also offers flexibility in choosing arbitrary
functionals of the state trajectory as observables; thasetibnals may depend smoothly 8heven when the state
itself has a less regular dependence. Here, we will empl@mnantrusive approach.

Applying orthogonality, the PC coefficients are simply

o E=[G(OE) dE)W(E)] _ [rC(0(8),d(£))¥i(£) f=(E) dE
Es [V3(2)] J7 Wi () f=(8) dE ’

whereG, ; is the coefficient of; for the cth component of the model outputs. Analytical expressioasaaailable
for the denominator&z [¥7(E)], but the numerators must be evaluated numerically. Wheewhkiations of the
integrand (and hence the forward model) are expensiveramsllarge, an efficient method for numerical integration
in high dimensions is essential.

To evaluate the numerators in (14), we employ Smolyak sppradrature based on one-dimensional Clenshaw-
Curtis quadrature rules [63]. Care must be taken to avoidifgignt aliasing errors when using sparse quadrature to
construct polynomial approximations, however. Indeeis, #dvantageous to recast the approximation as a Smolyak
sum of constituent full-tensor polynomial approximatipgach associated with a tensor-product quadrature rule tha
is appropriate to its polynomials [54, 64]. This type of appmation may be constructeatiaptively thus taking
advantage of weak coupling and anisotropy in the dependefifGeon ® andd. More details can be found in [54].

At this point, we may substitute the polynomial approxiraatdfG into the likelihood functiorfy e 4, Which in
turn enters the expected information gain estimator (3)s €hables fast evaluation of the expected information.gain
The computation of appropriate gradient information isdssed next.

(14)

4. INFINITESIMAL PERTURBATION ANALYSIS

This section applies the method of infinitesimal pertudratnalysis (IPA) [65-67] to construct an unbiased esti-
mator g of the gradient of the expected information gain, for use M. R’he same procedure yields the gradient
VIEN,A,I(-, wt) of a finite-sample Monte Carlo approximation of the expedatéormation gain, for use in SAA. The
central idea of IPA is that under certain conditions, an aséd estimator of the gradient of a function can be obtained
by simply taking the gradient of an unbiased estimator offtimetion. We apply this idea in the context of optimal
Bayesian experimental design.

The first requirement of IPA is the availability of an unbidsstimator of the function. Unfortunately, as described
in Section 2.1UN7M in (3) is a biased estimator &f for finite M [6]. To circumvent this technicality, let us optimize
the following objective function instead o&f:

Um(d) =Ee, v.ja {UN.,M(da ®SaYS):|

- / / UN.,I\I(daevas)fGS,Ys|d(Bsays|d) des dYS
ys Hs

(N, M)

2 i i i ~ (4,5)
= / / Una(d,0:y) [[  frieay?8.d)fe(0?)fe(® ") do.dy,,  (15)
ys Hs s\
(7’7])7(171)

whereH x )s is the support of the joint densi%s,ys‘d(es,ygd). Our original estimatoﬁN_,A,f is now unbiased
for the new objectivé/,, by construction! The tradeoff, of course, is that the fumretbeing optimized is no longer
the trueU. But it is consistent in that/;(d) — U(d) asM — oo, for any N > 0. (To illustrate this convergence,
realizations of]N,M, i.e., Monte Carlo approximations 6f,, are plotted in Fig. 2 for varying/.)

The second requirement of IPA comprises conditions allgvéin unbiased gradient estimator to be constructed
by taking the gradient of the unbiased function estimatam&ard conditions (see, for example, [67]) require that th
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random quantity (e.g[:INM) be almost surely continuous and differentiable. HereabeeﬁMM is parametrized
by continuous random variables that have densities withegtso Lebesgue measure, we can take a perspective that
relies on Leibniz’s rule with the following conditions:

1. UN,M andVgq (UMM) are continuous over the product space of design variabttseariom variables) x
Hs < Vs;

2. the density of the “noise” random variable is independémit.

The first condition supports the interchange of differegimand integration according to Leibniz’s rule. This
condition might be difficult to verify in arbitrary cases,tlthe use of finite-order polynomial forward models and
continuous distributions for the prior and observatior@ta ensures that we meet the requirement.

The second condition is needed to preserve the form of theatafion. If it is violated, differentiation with
respect tod must be performed on thés v a(0s,y,|d) term as well via the product rule, in which case the
additional termfys st Un.ar(d, 05,55) V [fo.v.1a(0s,ys|d)] dO,dy, would no longer be an expectation with
respect to the original density. The likelihood-ratio meethmay be used to restore the expectation [67, 68], but it is
not pursued here. Instead, it is simpler to transform theentw a design-independentrandom variable as described in
Section 2.2.2.

In the context of optimal Bayesian experimental designptiteome of the experimei is a stochastic quantity
that depends on the design From the stochastic optimization perspecti¥ejs thus a noise variable. To demon-
strate the transformation to design-independent nois@sseme a likelihood where the data result from an additive
Gaussian perturbation to the forward model:

Y = G(©,d)+E
= G(O,d)+C(O®,d)Z. (16)

HereC is a diagonal matrix with nonzero entries reflecting the dejeace of the noise standard deviation on other
guantities, and is a vector of i.i.d. standard normal random variables. Kkamgple, “10% Gaussian noise on the
cth component” would translate 16, ; = 6.,0.1|G.(®, d)|, whered,; is the Kronecker delta function. For other
forms of the likelihood, the right-hand side of (16) is simpéplaced by a generic function @, d, and some
random variabl&.. Here, however, we will focus on the additive Gaussian farrarder to derive illustrative expres-
sions.

By extracting a design independent random vari&feom the noise ternE = C(0, d)Z, we will satisfy the
second condition above. The design-dependendgisfincorporated int(ﬁN,M by substituting (16) into (3):

)
B(i’j),d) 1 } (17)

wherez, = {z(V}. The new noise variables are now independent dfhe samples of (") drawn from the likelihood
are instead realized by drawiag) from N (0, I), then multiplying these samples Iiyand adding them to the model
output.

With all conditions for IPA satisfied, an unbiased estimatbthe gradient of/, corresponding t@ in (6), is
simply VaUn a(d, 65, z5) Since

N
A 1 i i i
Onai(d,0,2) = ) {m [fy|@7d (G(e< ),d) + C(6D, d)z
=1

M

1 i i i

—In lﬁ E 1 Jy|e.qd (G(G( ),d)+C(0",d)z
=
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Bo.z. [VaUnar(d ©.2.)] = [ [ VaUxu(d. 0.2 0, 2,(0.2.)do. da.
Zs /Oy

=vd/ / Onar(d, 0,,2.) fo. 2, (04, 2,) dO, dz,
Zs JOg

= VaEe, z. [ﬁN,M(da oO,, Zs):|
= VaUn/(d), (18)

whereZ; is the support of'z, (zs). This gradient estimator is therefore suitable for use in.RM

The gradient of the finite-sample Monte Carlo approximaté/(d), i.e., Viy (-, w') used in SAA, takes
exactly the same form. The only difference between the twhasg lets ®, andZ, be random at every iteration
of the optimization process. When usedWéNM(-, wt), ©, andZ are frozen at some realization throughout the
optimization process. In either case, these gradient egjmes contain derivatives of the likelihood function and
thus derivative&V 4 G(6,d). WhenG is replaced with a polynomial expansion, these derivatbasbe computed
inexpensively. Detailed derivations of the gradient eatn using orthogonal polynomial expansions can be found in
the Appendix.

5. SOURCE INVERSION PROBLEM
5.1 Governing Equations

We demonstrate the optimal Bayesian experimental desigmilation and our stochastic optimization tools on a two-
dimensional contaminant identification problem. The ge#biplace a single sensor that yields maximum information
about the location of the contaminant source. Contamimansport is governed by a scalar diffusion equation on a
square domain:

ow

ot
wherew(x, t; x4 ) IS the space-time concentration field parametrized by tbedioate of the source centey,.. We
impose homogeneous Neumann boundary conditions

= V2w + S (Xgre, X, 1), x € X =0, 1]2 , (19)

Vw-n=0 onoX, (20)
along with a zero initial condition
w(x, 0;Xgrc) = 0. (21)

The source function has a Gaussian spatial profile

S Hxsrc _X”2 0<t<
S (Xere, %,t) = & 2702 P 22 P USERT (22)
t>T

)

wheres, h, andt areknown(prescribed) source intensity, width, and shutoff timegpagters, respectively, arg,. =

(04, ©,) is the unknown source location that we would ultimately litkénfer. The design variable is the location of

a single sensoKsensor = (dy, dy ), and the measurement dgts; }?_, comprise five noisy point observationswfat

the sensor location and at five equally spaced sample tinoeshis study, we choose= 2.0, h = 0.05, T = 0.3; a
uniform prior®,, ©, ~ U (0,1); and an additive error mod&} = w (Xsensor; ti, ; Xsrc) + Ei, @ = 1...5, such that

the F; are zero-mean Gaussian random variables, mutually indigpeigivenxg.,sor andxg.., €ach with standard
deviationo; = 0.1+ 0.1 |w (Xsensors ti; Xsre ) |- IN Other words, the error associated with the data has ar"fl@ue of

0.1 plus an additional contribution that is 10% of the sigiihk sensor may be placed anywhere in the square domain,
such that the design space(is., d,,) € [0, 1]2. Figure 1 shows an example concentration profile and measunts.
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FIG. 1. Example forward model solution and realizations from tkellhood. In particular, the solid line represents
the time-dependent contaminant concentratig®, ¢; Xs;c) at X = Xsensor = (0.0,0.0), given a source centered at
xsec = (0.1,0.1), source strength = 2.0, width 2~ = 0.05, and shutoff timer = 0.3. Parameters are defined in the
diffusion equation (19). The five crosses represent noisgsmements at five designated measurement times.

Evaluating the forward model thus requires solving theighdifferential equation (19) at fixed realizations of
0 = x4 and extracting the solution field at the design locatioa: x..nsor- We discretize (19) using second-order
centered differences on a 2525 spatial grid and a fourth-order backward differentiafiormula for time integration.
As described in Section 3, we replace the full forward modéha polynomial chaos surrogate, for computational
efficiency. To this end, we construct a Legendre polynompglraximation of the forward model output over the
four-dimensional joint parameter and design space, usitega&order polynomial truncation of degreé2 and10°
forward model evaluations. This high polynomial degree iather large number of forward model evaluations were
deliberately selected in order to render truncation arebalg error insignificant in our study. Optimal experiménta
design results of similar quality may be obtained for thishpem with surrogates of lower order and with far fewer
quadrature points (e.g., degree 4 witht forward model evaluations) but for brevity they are notirte#td here. The
relative L2 errors of the current surrogate range frém 10=3 to 10~5.

The optimal Bayesian experimental design formulation neeks the sensor locatiot,, .., such that when the
experiment is performedin average-i.e., averaged over all possible source locations acagrthi the prior, and
over all possible resulting concentration measuremermsrding to the likelihood—the five concentration readings
{Yi}le yield the greatest information gain from prior to posterior

5.2 Results
5.2.1 Objective Function

Before we present the results of numerical optimizationfivgt explore the properties of the expected information
gain objective. Numerical realizations é’fN,M for N = 1001 andM = 2, 11, 101, and 1001 are shown in Fig. 2.
These plots can be interpreted as 1-sample Monte Carlo xipmations of Uy, = ]E[UN,A,I], or equivalently, ag-
sample Monte Carlo approximations &f; = IE[U(N/I%M]. As N grows,UMM becomes a better approximation
to Uy, and asM grows,U,; becomes a better approximationlfo The figures show that values 6?fN7M increase
whenM increases (for fixedV), suggesting a negative bias at finike. At the same time, the objective becomes less
flat in d; sinceU is certainly closer to thé/ = 1001 surface than thé/ = 2 surface, these results suggest that

is not particularly flat ind. This feature of the current design problem is encouragimge stochastic optimization
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FIG. 2: Surface plots of independebity 5, realizations, evaluated over the entire design sfiadgé” > d = (z, y).
Note that the vertical axis ranges and color scales vary grttensubfigures.

problems with higher curvature can be more easily solvethércontext of SA, for example, they effectively have a
higher signal-to-noise ratio.

The expected information gain objective inherits symnastfiom the square, as expected from the physical nature
of the problem. The plots also suggest a smooth albeit naesonnderlying objectivd/, with inflection points
lying on an interior circle and four local maxima symmettigdocated at the corners of the design space. The
best placement for a single sensor is therefore at the ofahe design space, while the worst placement is at
the center. The reason for this perhaps counterintuitigaltrés that the diffusion process is isotropic: a series of
concentration measurements can only determine the destarithie source from the sensor, not its orientation. The
posterior distribution thus resembles an annulus of constalius surrounding the sensor. A sensor placement that
minimizes the area of these annuli, averaged over all plessdurce locations according to the prior, tends to be
optimal. In this problem, because of the domain geometntlaadagnitude of the observational noise, these optimal
locations happen to be the furthest points from the domaitecgi.e., the corners.

Figure 3 shows posterior probability densities for the sedocation, under different sensor placements, given
data generated from a “true” source centeresat = (0.09,0.22). The posterior densities are evaluated using the

Volume 4, Number 6, 2014



492 Huan & Marzouk

X Sensor
O Source Cents

—

0.8

0.6

>

0.4

0.2 @

5 0.2 0.4 0.6 0.8 1

X

(@) Xsensor = (0.07 0.0)

0.8 0. 04 06
X
(€) Xeensor = (1.0, 0.0) (d) Xsensor = (1.0, 1.0)

1

1.8

0.8 1.6

1.4

0.6 12

> 1

0.4 0.8

0.6

0.2 0.4

0.2
0

(€) Xsensor = (0.5, 0.5)

FIG. 3: Contours of posterior probability density for the sourcggltion, given different sensor placements. The true
source location, marked with a blue circlexig. = (0.09,0.22).
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polynomial chaos surrogate, while the data are generatditéstly solving the diffusion equation on a denser (201
101) spatial grid than before and then adding the Gaussiiae described in Section 5.1. Note that the posteriors are
extremely non-Gaussian. Moreover, they generally inctbdérue source location, but do not center on it. Reasons for
not expecting the posterior mode to match the true souregitotare twofold: first, we have only five measurements,
each perturbed with a relatively significant random noisepsd, there is model error, due to mismatch between the
polynomial chaos approximation constructed from the araspatial discretization of the PDE and the more finely
discretized PDE model used to simulate the dat&or this source configuration, it appears that a sensor g ksicany

of the corners yields a “tighter” posterior than a sensocgdiat the center. But we must keep in mind that this result is
not guaranteed faall source locations and data realizations; it depends on whergource actually is. [Imagine, for
example, if the source happened to be very close to the cefiitee domain; then the sensor at (0.5, 0.5) would yield
the tightest posterior.] What the optimal experimentalgiesethod yields is the optimal sensor placensrmraged
over the prior distribution of the source location and thedictive distribution of the data.

5.2.2 Stochastic Optimization Results

We now analyze the optimization results, first assessingb#avior of the two stochastic optimization methods
individually, and then comparing their performance.

Recall that the RM algorithm is essentially a steepestrdstethod (since we are maximizing the objective)
with a stochastic gradient estimate. Figures 4—6 each shomsimple RM optimization paths overlaid on tﬁp,M
surfaces from Fig. 2. The optimization does not always pEddée an ascent direction, due to the noise in the gradient
estimate, but even a noisy gradient can be useful in evéyntgaiding the algorithm to regions of high objective
value. Naturally, fewer iterations are needed and goodydesare more likely to be found when the variance of the
gradient estimator is reduced by increasiigand M. Note that one must be cautious not to over-generalize from
these figures, since the paths shown in each plot are notszegsepresentative. Instead, their purpose is to pevid
intuition about the optimization mechanics. Data derivea many runs are more appropriate performance metrics,
and will be used later in this section.

For SAA-BFGS, each choice of the sample sétyields a different deterministic objective; example reafions
of this objective surface are shown in Figs. 7-9. For eadizegn, a local maximum is found efficiently by the BFGS
algorithm, requiring only a few (usually less than 10) itemas. For each set of results corresponding to a particular
N (i.e., each of Figs. 7-9), the random numbers used for smallaes of M are proper subsets of those used for
larger M. We thus expect some similarity and a sense of convergenoe@the subplots in each figure. Note also
that when\V is low, realizations of the objective can be extremely défe from Fig. 2 (for example, the plots in Fig. 7
have local maxima near the center of the domain), althouginaaement is observed &$ is increased. In general,
each deterministic problem in SAA can have very differeatdiees than the underlying objective function. None of
the realizations encountered here has maxima at the coarésseven symmetric. Nonetheless, when sampling over
many SAA subproblems, even a laW can provide reasonably good results. This will be shown €&l and 2,
and discussed in detail below.

To compare the performance of RM and SAA-BFGS, 1000 indepetndins are conducted for each algorithm,
over a matrix ofN and M values. The starting locations of these runs are sampled &raniform distribution over
the design space. We make reasonable choices for the naingai@meters in each algorithm (e.g., gain schedule
scaling, termination criteria) leading to similar run tisnélistograms of the final design parameters (sensor posjtio
resulting from each set of 1000 optimization runs are shawrable 1. The top figures in each major row represent
RM results, while the bottom figures in each major row coroespto SAA-BFGS results. Columns correspond to
different values of\/. It is immediately apparent that more designs cluster attieers of the domain as and M
are increased. For the case with the largest number of sarfigle= 101 and M = 1001), each corner has around

"Indeed, there are two levels of model error: (1) between Gexpansion and the PDE model used to construct the PC erpansi
which has aAz = Ay = 1/24 spatial discretization; (2) between this PDE model and tbeenfinely discretized4z = Ay =
1/100) PDE model used to simulate the noisy data.

8Model error is an extremely important aspect of uncertajutgmtification [13], but its treatment is beyond the scopidisfstudy.
Understanding the impact of model error on optimal expentaedesign is an important direction for future work.
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FIG. 4: Sample paths of the RM algorithm wifi = 1, overlaid onU'N,M surfaces from Fig. 2 with the corresponding
M values. The largél is the starting position and the largeis the final position.

250 designs, suggesting that higher sample sizes cannbefumprove the optimization results. An “overlap” in
quality across the differenV cases is also observed: for example, results ofNhe- 101, M = 2 case are worse
than those of thév = 11, M = 1001 case. A balance is thus needed in choosing samples Bizexl M, and it is

not ideal to heavily favor sampling either the inner or ollemte Carlo loop ianMM. Overall, comparing the RM
and SAA-BFGS plots at intermediate valuesiéfand NV, we see that RM has a slight advantage over SAA-BFGS by
placing more designs at the corners.

The distribution of final designs alone does not reflect theistness of the optimization results. For exampl¥, if
is very flat near the optimum, then suboptimal designs neelawvery close to the true optimum in the design space
to be considered good designs in practice. To evaluate trodss a “high-quality” objective estimafaoomom is
computed for each of the 1000 final designs considered alitneeresulting histograms are shown in Table 2, where
again the top subrows are for RM and the bottom subrows a®48rBFGS, with the results covering a full range of
N andM values. In keeping with our previous observations, perforoe is improved a& and M are increased—in
that the mean (over the optimization runs) expected inftionajain increases, while the variance in the expected
information gain decreases. Note, however, that even @00 optimization runs produced identical final designs,
this variance will not reach zero, as there exists a “floortesponding to the variance of the estimalftmm,lom.
This minimum variance can be observed in the histogramssoRt results withV = 101 andM = 101 or 1001.
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FIG. 5: Sample paths of the RM algorithm wifti = 11, overlaid onﬁMM surfaces from Fig. 2 with the correspond-
ing M values. The larggl is the starting position and the largeis the final position.

One interesting feature of the histograms in Table 2 is thieirodality. The higher mode reflects designs near
the four corners, while the lower mode encompasses all atif@sptimal designs. A¥ or M increase, we observe
a transfer of probability mass from the lower mode to the uppede. However, the sample sizes are not large
enough for the lower mode to completely disappear for mostsait is only absent in the two RM cases with the
largest sample sizes. Overall, the histograms are similsinape for both algorithms, but RM appears to produce less
variability in the expected information gain, particujaslt high N values.

Table 3 shows histograms of optimality gap estimates frarl®00 SAA-BFGS runs. Since we are dealing with
amaximizatiorproblem (for the expected information gain), the estim&tmmn Section 2.2.2 is reversed in sign, such
that the upper bound is noisy and the lower bound 8y (i, w!,). The lower bound must be evaluated with the
same inner-loop Monte Carlo sample sizeused in the optimization run in order to represent an idatljibiased
underlying objective; hence, the lower bound values wnilt be the same as the “high-quality” objective estimates
01001,1001 discussed above. From the table, we observe thaf ascreases, values of the optimality gap estimate
decrease. This is a result of the lower bound rising uNtl{since the optimization is better able to find designs in
regions of largd/,,, e.g., corners of the domains in Table 1), and the upper beimdltaneously falling (since its
positive bias monotonically decreases wNH39]). Consequently, both bounds become tighter and theegtimates
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FIG. 6: Sample paths of the RM algorithm withh = 101, overlaid onUN,M surfaces from Fig. 2 with the corre-
spondingM values. The largél is the starting position and the largeis the final position.

tend toward zero. A3/ increases, the variance of the gap estimates increases. tBim upper boundufy) is fixed

for a given set of SAA runs, the spread is only affected by #éability of the lower bound. Indeed, from Figure 2,
it is apparent that the objective becomes less flat/agicreases, with the highest gradients (considering thel goo
design regions only) occurring at the corners. This traesleo a higher sensitivity, as a small “imperfection” in the
design would lead to larger changes in objective estimate;tben would expect the variation bf (2, w!,) to
become higher as well, leading to greater variance in theegimates. Finally, ad/ increases, the histogram values
tend to increase, but they increase more slowly for largkregof N. Some intuition for this result may be obtained
by considering theelative rates of change of the upper and lower bounds with respetf,tgiven different values

of N. Again referring to Fig. 2, the objective values generatigrease with\/, indicating an increase of the lower
bound. This increase should be more pronounced for la¥gesince the optimization converges to designs closer to
the corners, where, as mentioned earlier, the objectivéangear gradient. The upper bound increases Witlas well,

as indicated by the contour levels in Figs. 7-9. But this oatacrease is observed to be slowest at the higie@te.,

in Fig. 9). Combining these two effects, it is reasonablé #saV increases, the gap estimate will increase withat

a slower rate.
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FIG. 7: Realizations of the objective function surface using SAAd aorresponding steps of BFGS, with = 1.
The large] is the starting position and the largeis the final position.

Can the optimality gap be used to choose valued/odind N? For a fixedM, we certainly have convergence as
N increases, and the gap estimate can be a good indicatoutibsoduality. However, because different valueg/6f
correspond to different objective surfaces (due to themﬂaév,M), the optimality gap is unsuitable for comparisons
across different values af/; indeed, in our example, even though solution quality isriorpd with M, the gap
estimates appear looser and noisier.

Another performance metric we extract from the stochagttarazation runs is the number of iterations required
to reach a solution; histograms of iteration number for RM &AA, for the same matrix of/ and NV values, are
shown in Table 4. At low sample sizes, many of the SAA-BFGSnake only a few iterations, while almost all of
the RM runs terminate at the maximum allowable number chitens (50 in this case). This difference again reflects
the efficiency of BFGS for deterministic optimization prebis. AsN and M are increased, the histograms show a
“transfer of mass” from higher iteration numbers to lowerdtion numbers, coinciding somewhat with the bimodal
behavior described previously. The reduction in iteratiomber with increased sample size implies thahatiold
increase in sample size leads to an increase in computktiimeahat is oftermuch lesshan a factor of.. Accounting
for this sublinear relationship when allocating compwtasil resources, especially if samples can be drawn in pérall
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FIG. 8: Realizations of the objective function surface using SA#d aorresponding steps of BFGS, with = 11.
The large] is the starting position and the largeis the final position.

can lead to substantial savings. Although SAA-BFGS geherafjuires fewer iterations, each iteration takes longer
than a step of RM. RM thus offers a higher “resolution” in rimés, potentially giving more freedom to the user in
stopping the algorithm. RM thus becomes more attractivlh@®valuation of the objective function becomes more
expensive.

As a single integrated measure of the quality of the stoahaptimization solutions, we evaluate the following
mean-square error (MSE):

T
1 N 2
MSE = T Z (U1001)1001 (dt, 91;/, ZZ/) — Uref) , (23)

t=1

whered?, t = 1...T, are the final designs from a given optimization algorithnd &"*f is the true optimal value of
the expected information gain. Since the true optimum isvaiteble in this studyl/*f is taken to be the maximum
value of the objective over all runs. Recall that the MSE cimab the effects of bias and variance; here it reflects
the variance in objective values plus the difference (segignetween the mean objective value and the true optimum,
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FIG. 9: Realizations of the objective function surface using SAAd aorresponding steps of BFGS, with= 101.
The large] is the starting position and the largeis the final position.

calculated vidl" = 1000 replicated optimization runs. Figure 10 relates solutioaliy to computational effort by
plotting the MSE against average computational time (pe).fidach symbol represents a particular valuévofx,

(O, andO representN = 1, 11, and 101, respectively), while the four differevt values are reflected through
the average run times. These plots confirm the behavior we pwiously encountered. Solution quality generally
improves (lower MSE) with increasing sample sizes, althoadalanced allocation of samples must be chosen. For
instance, a larg&/ with small M can yield inferior solutions to a small@f with larger A/ ; while, for any givenV,
continued increases il beyond some threshold yield minimal improvements in MSEe bést sample allocation is
described by the minimum of all the curves. We highlight éh&ptimal fronts” in light red for RM and in light blue

for SAA-BFGS. Monte Carlo error in the “high-quality” estﬁtorUlOOMOM may also be reflected in the nonzero
MSE asymptote for the high¥ RM cases.

According to Fig. 10, RM outperforms SAA-BFGS by consiskgatchieving smaller MSE for a given computa-
tional effort. One should be cautious, however, in genaralifrom these numerical experiments. The advantage of
RM is relatively small, and other factors such as code og@tin, choices of algorithm parameters, and of course
the experimental design problem itself can affect or evearse this advantage.
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TABLE 1: Histograms of final search positions resulting from 100@pehdent runs of RM (top subrows) and SAA
(bottom subrows) over a matrix & andM sample sizes. For each histogram, the bottom-right andreliéft axes
represent the sensor coordinateandy, respectively, while the vertical axis represents freqyen
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6. CONCLUSIONS

This paper has explored the stochastic optimization profaldsing from a general nonlinear formulation of optimal
Bayesian experimental design. In particular, we employedlgective that reflects thexpected information gaiim
model parameters due to an experiment, and formulated tadigrt-based approaches to stochastic optimization
in this context: Robbins-Monro (RM) stochastic approximatand sample average approximation (SAA) coupled
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TABLE 2: High-quality expected information gain estimates at thalfsensor positions resulting from 1000 inde-
pendent runs of RM (top subrows, blue) and SAA-BFGS (bottobtaws, red). For each histogram, the horizontal
axis represents values bhs—1001,v=1001 @nd the vertical axis represents frequency
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with BFGS. Both of these algorithms require gradient infation derived from Monte Carlo approximations of the
objective: an unbiased gradient estimator in the formee,casd gradients of a finite-sample Monte Carlo estimate
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TABLE 3: Histograms of optimality gap estimates for SAA-BFGS, ovenarix of samples sized/ and N. For
each histogram, the horizontal axis represents value afdpesstimate and the vertical axis represents frequency
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in the latter case. Methods for extracting this gradierdiimfation must contend with an estimator of expected infor-
mation gain that is not a simple Monte Carlo sum, but rathetaios nested Monte Carlo estimates. It is therefore
expensive to evaluate, and biased for finite inner-loop $asipes. To circumvent these challenges, we approximate
the forward model embedded in the likelihood function witpadynomial chaos expansion, and maximize the ex-
pected information gain computed via this approximatiatead. Gradient information is readily extracted from the
polynomial chaos expansion, with the help of a simple pbgtion analysis.

We analyze the performance of the two stochastic optinuratpproaches using the problem of sensor placement
for source inversion, cast as optimal experimental desigar a continuousdesign space. Numerical experiments,
performed over a matrix of inner- and outer-loop samplessiggamine the impact of bias and variance in the objective
function and gradient estimates on the efficiency of thenogtition algorithms and on the quality of the resulting
solutions. These experiments suggest (unsurprisinggf) gblution quality improves as sample sizes increase, but
also that optimization runs may converge in fewer iteratitor larger sample sizes. Alsobalancedallocation of
computational resources between the inner and outer Maoawtl® Gums is important for computational efficiency.
Arbitrarily increasing the inner-loop sample size, fortargce, yields little improvement in solution quality whéret
outer-loop samples are too few. Our results also suggesRiiehas a consistent performance advantage over SAA-
BFGS, but this conclusion is necessarily problem-dependiestead of declaring one algorithm to be superior, our
broader goal is to illustrate the differences between tledlgorithms and provide some selection guidelines based
on their properties.

The SAA approach may provide more flexibility than SA, as it ¢ combined with any deterministic opti-
mization algorithm, whereas the SA approach essentialbgifips the form of each optimization iteration. SAA's
flexibility allows one to take advantage of problem struetuf realizations of the objective surface are known to be
“well-behaved” and smooth, gradient-based algorithmsiagc BFGS can exploit this regularity, as in the present
source inversion example. On the other hand, if the objedtinot smooth, or if gradients are not available, some
gradient-free deterministic algorithm may be more apgeder Estimates of optimality gap, obtained from replicate
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TABLE 4: Number of iterations in each independent run of RM (top swisydlue) and SAA-BFGS (bottom
subrows, red), over a matrix of sample sizésand N. For each histogram, the horizontal axis representsiiterat
number and the vertical axis represents frequency
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SAA solutions, can be used to adaptively adjust the out@p-ldonte Carlo sample size, but are unsuitable for as-
sessing the inner-loop sample size because of bias effadisie work could employ the common random number
stream approach in [40] to obtain a lower-variance estiroatgptimality gap (along with a confidence interval), or
the jackknife technique proposed in [69] for bias reduction
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FIG. 10: Mean square error, defined in (23), versus average run timeafth optimization algorithm and various

choices of inner-loop and outer-loop sample sizes. Thdigigied curves are “optimal fronts” for RM (light red) and
SAA-BFGS (light blue).

The RM algorithm and other stochastic approximation meshodist use a stochastic gradient estimator. This
can lead to poor performance if only high-variance gradéstimates are available. In the current context, increas-
ing the outer-loop sample size reduces variance and the Bdtitdm performed relatively well. Note that the fre-
guent (yet cheaper) steps of RM effectively provide a finephation in run time than SAA, giving the user more
freedom to terminate the algorithm without losing much pesg between the termination time and the previous
optimization iteration. Therefore, RM may become moreaative as objective evaluations become more expen-
sive?

The present approach usedlabal polynomial chaos surrogate, constructed over the produttteoparameter
spaceH and the design spad®. In model-based methods fdeterministicderivative-free optimization, one might
prefer to construct local surrogates valid over incredgismaller intervals ofD, particularly as one approaches the

9Even if a polynomial chaos expansion is used as a surrogataddorward model, its evaluation can become expensiveeif t
stochastic dimension and polynomial order are high, thougimains much cheaper than the original model.
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optimum. Pursuing similar ideas in the stochastic contedtadpossibly offer additional accuracy, but sampling esro
in the stochastic optimization solution will always limibigntial gains.

Finally, as we pointed out in Section 2.1, this paper hasfedwn batch or open-loop experimental design, where
the parameters for all experiments are chosen before datecarally collected. An important target for future work is
rigorous sequential or closed-loop design, where the data bne set of experiments are used to guide the choice of
the next set. Here we expect stochastic optimization alyos, for expected information gain and other objectives,
to continue playing a crucial role.
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APPENDIX: ANALYTICAL DERIVATION OF THE UNBIASED GRADIENT ESTIMATOR

In this section, we derive the analytical form of the unbéhgeadient estimatoWUN,M(d, 0,,z,),'" following the
method presented in Section 4.

1°Recall that this estimator is unbiased with respect to thdignt of U, .
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The estimatoﬁN,M(d, 0,,2,) is defined in (17). Its gradient in component form is

- 9. i
a7 / d sy bs
adlUN,I\{( ,0s,25)

Uy m(d, 05,2,
ady N,M(a Z)

VUNMm(d, 05, 25) = , (24)
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whereng is the dimension of the design parametémndd, denotes theath component ofl. Theath component of
the gradient is then
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Partial derivatives of the likelihood function with respézd are required above. We assume that each component of
C(8',q) is of the forma, + B.|G.(8@,d)|,c = 1.. .ny, Wheren,, is the dimension of the data vectdf, and

., B are constants. Also, let the random vectafs be mutually independent and composed of i.i.d. components,
such that the data are conditionally independent gdrandd. The derivative of the likelihood function then becomes
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Introducing a standard normal density for eaéH, the likelihood associated with a single component of tha da
vector is
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and its derivatives are
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+

Go(87),d) — (Go(8",d) + (xc + Bo|Ge(0, @)))="))
. 2
(ac + BelGe(01). )]
x < G007, 0) — (-G (07, a)(1 + Besign(Ge(0. @):L) )
c(e W) d) - (G, (B(Z),d)—i—(occ—i—BC|GC(G(”,d)|)z§Z))) Besign(Ge(077),d));5-G.(07, d)

(o + BelGe(0®), a)])’

(28)

In cases where conditioning @) is replaced by conditioning oDV [i.e., for the first summation term in Eq. (25)],
the expressions simplify to

(i)
@) @) OIFG) 1 ( )
fYc|@,d(GC(e 7d)+((xC+BC|GC(B ad)|)zc |B ad): ; €Xp _T (29)
V27 (o + BelGo(81, )]
and
9 . ) N
5 v10.a(Ge(0.d) + (e + BeGe(8". )= 01, d)
AN 2
B sign(Go(0,d)) 52 G.(07, d) (=)
_ e (30)
Vo (o + puic(0" )

We now require the derivative of each model outtwith respect tad. In most cases, this quantity will not
be available analytically. One could use an adjoint metlmdvialuate the derivatives, or instead employ a finite
difference approximation, but embedding these approaare#lonte Carlo sum may be prohibitive, particularly if
each forward model evaluation is computationally expensite polynomial chaos surrogate introduced in Section 3
addresses this problem by replacing the forward model vatiimomial expansions for eith&r,.

~ 3 oty (867, )) (31)
beJ
orlnG.
Ge(8",d) ~ exp [Z 95T (a(e“),d))] : (32)
beJ
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Here g, are the expansion coefficients apdis an admissible multi-index set indicating which polynahterms
are in the expansion. For instancenif is the dimension 0B andn, is the dimension ofl, such thaing + ng is
the dimension ok, thenJ := {b € Nj°**" : |b|; < p} is a total-order expansion of degrgeThis expansion
converges in thé&? sense ap — oo.

Consider the latter (Iit7.) case; here, the derivative of the polynomial chaos exparisi

afza G(0",d) = exp le: 96T (E(G(i),d))] Xb:gb B?la (0, d)). (33)

In the former (7. without the logarithm) case, we obtain the same expressiogpe without theexp [-] term.
To complete the derivation, we assume that each componéme afiput parametei® and design variabled is
represented by an affine transformation of correspondieglvandom variablg:

O = vi+§5, (34)
dy—ny = 7Y +OorEy, (35)
whereyy andd.y # 0 are constants, and= 1,...,m¢ andl’ = ng + 1,...,n9 + ng. This is a reasonable

assumption sincg& can be typically chosen such that their distributions arthefsame family as the prior dh (or
the uniform “prior” ond); this choice avoids any need for approximate represemisbf the prior. The derivative of
U, (£(01, d)) from Eq. (33) is thus

a ; a neo i ne+ng
A Un(E@. Q) = - T[we (20) I o (Er(dr-ny))
@ =1 l'=ng+1
ne ) ne+nd o
= TTwn (80) | TT o (E(drone)) | 5P (Earne(da)), (36)
=1 l/:ne+1 @
l'—ng#a

and the derivative of the univariate basis functipmwith respect tai, is

0 0 0
3—da¢ba+"e (E»a+ne (da)) = aanrne wba+ne (Eva-f-ne) a—daaaﬁ-ne (da)
0 1
= aaa+ne IbbaJrne (EvaJrne) ma (37)

where the second equality is a result of using Eq. (35). Thvateve of the polynomial basis function with re-
spect to its argument is available analytically for manydtad orthogonal polynomials, and may be evaluated using
recurrence relationships [70]. For example, in the caseegEhdre polynomials, the usual derivative recurrence rela
tionship is 2 (£) = [—b&Wn (&) + bb,—1(8)] /(1 — £2), wheren is the polynomial degree. However, division by
(1— &2) presents numerical difficulties when evaluated.dhat fall on or near the boundaries of the domain. Instead,
a more robust alternative that requires both previous mohial function and derivative evaluations can be obtained
by directly differentiating the three-term recurrencatenship for the polynomial, and is preferable in practice

0 2

2n

n—1209
a—all)nfz(i)- (38)

n—1 —-1_0
- Yr1(&) + - 3&11)7%1(5)—

n

This concludes the derivation of the analytical gradietitmﬂorVUMM(d, 0s,25).
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