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This paper presents a new Gibbs sampling based approach for Bayesian model updating of a linear dynamic system
based on modal data (natural frequencies and partial mode shapes of some of the dominant modes) obtained from
a structure using multiple setups. Modal data from multiple setups pose a problem as mode shapes identified from
multiple setups are normalized individually and the scaling factors to form the overall mode shape are not known a
priori. For comprehensive quantification of the uncertainties, the proposed approach allows for an efficient update of the
probability distribution of the model parameters, overall mode shapes, scaling factors, and prediction error variances.
The proposed approach does not require solving the eigenvalue problem of any structural model or matching of model
and experimental modes, and is robust to the dimension of the problem. The effectiveness and efficiency of the proposed
method are illustrated by simulated numerical examples.
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1. INTRODUCTION

Dynamic characteristics of a vibrating structure are usually predicted by finite element (FE) models. These models
often give results that differ from the experimentally obtained data because of the uncertainties involved in the mod-
eling process. These uncertainties may arise because of several factors such as incomplete knowledge or simplifying
assumptions made during the modeling process, uncertainties about modeling parameters, incompleteness of exper-
imentally obtained data or measurement errors. Accurate and appropriate uncertainty characterization of the system
modeling parameters and the modeling errors is essential for a robust prediction of future response and reliability of
structures [1–4]. Therefore, FE models need to be updated using the experimentally obtained data such that they more
accurately reflect the dynamic behavior of the structure of interest.

In recent years, much focus has been on probabilistic model updating [5–10] for comprehensive quantification of
the uncertainties. Beck and Katafygiotis [5] presented a general Bayesian statistical framework for model updating
that explicitly treats model uncertainties and prediction errors. For a given modelM, given the prior probability
distribution function (PDF)p(θ|M) of the uncertain model parametersθ ∈ Θ ∈ Rnθ and dataD, the posterior PDF
p(θ|D,M) is given by

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
(1)

wherep(D|θ,M) is the likelihood function andp(D|M) is the normalizing constant such that the integral of the
right-hand side of Eq. (1) over the domain ofθ is equal to unity. The denominator in Eq. (1) is often not known explic-
itly, thusp(θ|D,M) is only known up to a normalizing constant. Based on the topology ofp(θ|D,M), Katafygiotis
and Beck [11] proposed to classify the model classM into three different categories: globally identifiable (unique
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optimal estimate), locally identifiable (finite number of optimal estimates), and unidentifiable (continuum of optimal
estimates). Beck and Katafygiotis [5] adopted Laplace’s method of asymptotic approximation which requires a non-
convex optimization [12] to obtain the posterior PDF of the model parameters. However, the accuracy of such an
approximation is questionable when either the amount of data is not sufficiently large or the chosen class of models
turn out to be unidentifiable based on the available data. Also, the approach is computationally challenging especially
in a high-dimensional parameter space or when the model class is not globally identifiable. To avoid these limitations,
lately focus has shifted to stochastic simulation methods for Bayesian updating especially Markov Chain Monte Carlo
(MCMC) methods, such as Gibbs sampling [8], Metropolis–Hasting [13], Transition MCMC [14], and hybrid Monte
Carlo [15] algorithms. Stochastic simulation methods allow generating samples which are distributed as posterior PDF
without the need of evaluating the normalizing constant in Bayes’ theorem.

In structural dynamics, the experimentally obtained data can consist of data in the frequency or time domain, or
modal data. The proposed approach makes use of the modal data to update the model parameters of a linear dynamic
system. It is assumed that the modal data are obtained using low-amplitude vibrations so the assumption that the
structure behave approximately linearly during such vibration is valid. There are several ambient or forced vibration
based techniques available in the literature for modal identification [16–19].

In the past, several authors have considered the problem of model updating using modal data. Vanik el al. [4]
used non-linear optimization to calculate the most probable values of the model parameters [that is,θ that maximizes
p(θ|D,M), for the globally identifiable case] using modal data. Yuen et al. [20] calculated the most probable values
of the model parameters using modal data by iteratively solving a series of coupled linear optimization problems.
The most probable model does not imply that this model can exactly represent the dynamic behavior of structure of
interest. Instead, there is a region in the uncertain parameter space corresponding to high probability models quantified
by posterior PDF, which are those models most consistent with the experimental data and prior information. For
identification and uncertainty quantification, Ching et al. [7] presented a Gibbs sampling based simulation approach
for model updating of linear dynamic systems using modal data consisting of classical normal modes. Cheung and
Bansal [8] extended the Gibbs sampling based simulation approach for model updating of a linear dynamic system
using modal data consisting of non-classical modes. In all the aforementioned approaches it is assumed that the modal
data are obtained using a single setup. However, due to practical limitations which results in a limited number of
sensors and acquisition channels, it is a common practice to obtain modal data from several setups each covering
a different part of the structure. Modal data from multiple setups pose a problem as mode shapes identified from
multiple setups are normalized individually and the scaling factors to form the overall mode shape are not knowna
priori .

The objective of this paper is to propose a Gibbs simulation based approach for Bayesian model updating of a
linear dynamic system using the modal data obtained using multiple setups. In the proposed approach, the uncertain
parameter space that originally comprises model parameters and parameters defining the probabilistic models of the
model prediction errors is extended by introducing additional parameters, that is, mode shapes and scaling factors to
get conditional distributions that are easier to handle algorithmically. By treating mode shapes and scaling factors as
uncertain parameters, full conditional distributions are obtained that in turn facilitate the use of Gibbs sampling. The
proposed approach does not require solving the eigenvalue problem of any structural model or matching of model and
experimental modes, and is robust to the dimension of the problem. To demonstrate the effectiveness and efficiency
of the proposed method, illustrative examples with simulated data are presented.

2. PROPOSED APPROACH

Let D ≡ {Di : i = 1, ..., R} denote the experimentally obtained modal data from a linear dynamic system where
R is the number of setups and whereDi = {ω̂i,m,s, ψ̂i,m,s : m = 1, ...,M, s = 1, ..., S} denote the data from the
ith setup consisting of natural frequenciesω̂i,m,s ∈ R+ and partial mode shapeŝψi,m,s ∈ Rni . For each setup,S
is the number of data sets obtained and from each data setM is the number of observed modes. It is assumed that
the partial mode shapes are normalized to have unit Euclidean norm, that is,||ψ̂i,m,s|| =

√
ψ̂T

i,m,sψ̂i,m,s = 1. It is
possible, although not necessarily, that some degrees of freedom (dof) are measured in multiple setups. Therefore, the
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number of distinct measured dof from all setupsno is less than or equal to the number of dof of the identification
modelnd(no ≤ nd).

2.1 Identification Model

The identification model is based onnd-dof linear structural models where the mass matrixM ∈ Rnd×nd and stiffness
K ∈ Rnd×nd matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices
from the individual prescribed substructures:

M(α) = M0 +
Nα∑

i=1

αiM i (2)

K(η) = K0 +
Nη∑

i=1

ηiK i (3)

whereα = [α1 · · ·αNα ]T andη = [η1 · · ·ηNη ]T are the mass and stiffness scaling parameters, respectively, and
α = [1 · · · 1]T and η = [1 · · · 1]T give the nominal mass and stiffness matrices, respectively. The joint PDF of
parameters[αT ηT ]T is to be updated by the dataD. Natural frequenciesωm and mode shapesψm for m = 1, ..., M
can be obtained from the solution of the following eigenvalue problem:

(
ω2

mM(α)− K(η)
)
ψm = 0 (4)

Replacing system natural frequencies with experimentally obtained natural frequencies gives
(
ω̂2

i,m,sM(α)− K(η)
)
ψm = εi,m,s (5)

where the system mode shapeψm is mathematically related to the experimentally obtained mode shapeψ̂i,m,s through
a selection matrixL i ∈ Rni×nd comprising zeros and ones that maps thend model dof to theni observed dof:

ψ̂i,m,s − ci,mL iψm = ei,m,s (6)

In Eq. (6), the scaling factorci,m relates the measured mode shapeψ̂i,m,s to the model predicted mode shapeL iψm.
By definition, the overall mode shape is only known up to a scaling constant. ForR partial mode shape obtained using
R setups, there are effectively only (R − 1) unknown scaling factors to be updated to form the overall mode shapes.
In the present formulation, it is assumed that one of the scaling factors for each mode shape is fixed, for example,
c1,m = 1 for m = 1, ..., M . For the case withR = 1, Eq. (6) reduces to an equation similar to that defined in Ching
et al. [7] for the special case where the modal data are obtained using a single setup.

In Eqs. (5) and (6),εi,m,s andei,m,s are the random vectors representing the model prediction errors, that is, the
errors between the response of the system under consideration and that of the assumed model. The PDFs for vectors
εi,m,s andei,m,s are taken to be Gaussian based on the Principle of Maximum Entropy [21]. Their means are assumed
to be equal to zero and covariance matrices equal to scaled versions of the identity matrixI of appropriate order,
respectively:

εi,m,s ∼ N(0, σ2
mI) (7)

ei,m,s ∼ N(0, δ2
i,mI) (8)

The overall mode shapesψm : m = 1, ...,M , scaling factorsci,m : i = 2, ..., R, m = 1, ...,M , and prediction error
variancesσ2

m : m = 1, ..., M are not knowa priori and are introduced as extra parameters to be updated using the
system data. Introducingδ2

i,m : i = 1, ..., R; m = 1, ..., M as uncertain parameters results in Pareto optimal structural
models [22]. To handle this problem, the error variancesδ2

i,m are assumed to be known or are directly estimated from
the sample variance of the experimental modal data as follows:

δ̂2
i,m =

1
Sni

S∑
s=1

||ψ̂i,m,s − ψ̄i,m||2 (9)
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whereψ̄i,m =
S∑

s=1
ψ̂i,m,s/S is the averaged mode shape for themth mode identified in theith setup. In the proposed

Gibbs sampling based approach, four groups of parameters are considered:

θ1 = [αT ηT ]T ∈ RN1

θ2 = [c2,1 · · · cR,M ]T ∈ R(R−1)M

θ3 = [ψT
1 · · ·ψT

M ]T ∈ RMnd

θ4 = [σ2
1 · · ·σ2

M ]T ∈ RM

2.2 Prior PDF

The prior PDF for mass and stiffness contribution parametersθ1 is taken to be a Gaussian PDF, that is,θ1 ∼
N(µ(0)

1 , P(0)
1 ), with µ

(0)
1 as the most probable values andP(0)

1 as a prior covariance matrix to express the initial
uncertainties. For scaling factorsθ2 it is assumed that they can take any real value. The prior PDF for the overall
mode shapesθ3 is taken to be the product of independent uniform PDFs. For the case where any prior information is
available to assign a prior PDF forθ3, the product of independent Gaussian PDFs may be used as the prior PDF. The
prior PDF for the prediction error variancesθ4 is taken to be the product of independent inverse gamma PDFs. An
inverse gamma PDFIG(ρ0,κ0) of, e.g.,σ2 with prespecified parametersρ0 andκ0 is

p(σ2) =
κ

ρ0
0

Γ(ρ0)
(
σ2

)−ρ0−1
exp

(
−κ0

σ2

)
(10)

where the shape parameterρ0 and the rate parameterκ0 are expressed in terms of the mean and coefficient of variation
(c.o.v) ofσ2. These choices of the prior PDFs (Bayesian conjugate priors [23]) allow direct sampling from the full
conditionalp(θ1|θ2,θ3,θ4, D,M), p(θ2|θ1,θ3, θ4, D,M), p(θ3|θ1, θ2, θ4, D,M), andp(θ4|θ1, θ2, θ3, D,M)
that in turn facilitate the use of Gibbs sampling.

3. GIBBS SAMPLING

The Gibbs sampling [24] is a particular form of MCMC algorithm for obtaining samples from an arbitrary multivariate
PDF when direct sampling from the joint distribution is difficult, but sampling from the conditional distributions of
each variable, or set of variables, is possible. In the current problem for implementation of the Gibbs sampling to obtain
posterior samples distributed asp(θ|D,M), full conditional PDFsp(θ1|θ2,θ3, θ4, D,M), p(θ2|θ1, θ3, θ4, D,M),
p(θ3|θ1, θ2, θ4, D,M), andp(θ4|θ1, θ2, θ3, D,M) are required.

3.1 Conditional PDF p(θ1|θ2,θ3,θ4, D,M)

Givenθ2, θ3, θ4, andD, Eq. (5) is linear with respect toθ1 and can be written in the following form:

Y1 − A1θ1 = E1 (11)

whereY1 andA1 are given as follows:

Y1 =
[
bT

1,1,1 · · · bT
i,m,s · · · bT

R,M,S

]T ∈ RndRMS×1

bi,m,s =
(
ω̂2

i,m,sM0 − K0

)
ψm ∈ Rnd×1

A1 = − [
dT

1,1,1 · · · dT
i,m,s · · · dT

R,M,S

]T ∈ RndRMS×N1

di,m,s =
[
ω̂2

i,m,sM1ψm · · · ω̂2
i,m,sMNαψm K1ψm · · ·KNηψm

] ∈ Rnd×N1
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E1 follows a Gaussian distribution with zero mean and covariance matrix given by

Σ1 =




σ2
1I 0

. ..
0 σ2

M I


 ∈ RndRMS×ndRMS (12)

Y1 andA1 are fixed matrices givenθ3 andD, andΣ1 is a fixed covariance matrix givenθ4. Then, the full conditional
PDFp(θ1|θ2,θ3,θ4, D,M) is a Gaussian distribution with meanµ1 and covariance matrixP1 given by

µ1 = µ
(0)
1 + P(0)

1 AT
1

(
Σ1 + A1P(0)

1 AT
1

)−1 (
Y1 − A1µ

(0)
1

)
(13)

P1 = P(0)
1 − P(0)

1 AT
1

(
Σ1 + A1P(0)

1 AT
1

)−1

A1P(0)
1 (14)

3.2 Conditional Distribution p(θ2|θ1, θ3, θ4, D,M)

For each mode, the model prediction errorsδ2
i,m are assumed to be independent. Therefore, scaling factorsθ2,m =

[c2,m · · · cR,m]T for each mode shape are updated independently. Givenθ3 andD, Eq. (6) is linear with respect to
θ2,m and can be written in the following form:

Y2,m − A2,mθ2,m = E2,m (15)

whereY2,m andA2,m are given as follows:

Y2,m = [ψ̂T
2,m,1 · · · ψ̂T

i,m,s · · · ψ̂T
R,m,S ]T ∈ R

R∑
i=2

niS×1

A2,m =




L2ψm 0.. .
L iψm . . .

0 LRψm


 ∈ R

R∑
i=2

niS×(R−1)

E2,m follows a Gaussian distribution with zero mean and covariance matrix:

Σ2,m =




δ2
2,mI 0

. ..
0 δ2

R,mI


 ∈ R

R∑
i=2

niS×
R∑

i=2
niS

(16)

Y2,m, A2,m, andΣ2,m are fixed matrices givenθ3 andD. Then, the conditional PDFp(θ2,m|θ1,θ3, θ4, D,M) is a
Gaussian distribution with meanµ2,m and covariance matrixP2,m given by

µ2,m =
(

AT
2,mΣ−1

2,mA2,m

)−1

AT
2,mΣ−1

2,mY2,m (17)

P2,m =
(

AT
2,mΣ−1

2,mA2,m

)−1

(18)

3.3 Conditional Distribution p(θ3|θ1, θ2, θ4, D,M)

The full conditional PDFp(θ3|θ1,θ2,θ4, D,M) can be written as follows:

p(θ3|θ1, θ2,θ4, D,M) =
M∏

m=1

p(θ3,m|θ1, θ2, θ4, D,M) (19)
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Therefore, each mode shapeθ3,m : m = 1, ...,M is updated independently. Conditioned onθ1, θ2, θ4, andD,
Eqs. (5) and (6) can be written in the following form:

Y3,m − A3,mθ3,m = E3,m (20)

whereY3,m andA3,m are given as follows:

Y3,m = [01×nd ψ̂T
1,m,1 · · · 01×nd ψ̂T

i,m,s · · · 01×nd ψ̂T
R,m,S ]T ∈ R

(
ndR+

R∑
i=1

ni

)
S×1

A3,m =




ω̂2
1,m,1M − K
c1,mL1

...
ω̂2

i,m,sM − K
ci,mL i

...
ω̂2

R,m,SM − K
cR,mLR




∈ R
(

ndR+
R∑

i=1
ni

)
S×nd

E3,m follows a Gaussian distribution with zero mean and covariance matrix:

Σ3,m =




σ2
mI 0

δ2
1,mI

. ..
σ2

mI
0 δ2

R,mI



∈ R

(
ndR +

R∑
i=1

ni

)
S×

(
ndR +

R∑
i=1

ni

)
S

(21)

Y3,m, A3,m, andΣ3,m are fixed matrices givenθ1, θ2, θ4, andD. Then, the conditional PDFp(θ3,m|θ1,θ2, θ4,
D,M) is a Gaussian distribution with meanµ3,m and covariance matrixP3,m given by

µ3,m =
(

AT
3,mΣ−1

3,mA3,m

)−1

AT
3,mΣ−1

3,mY3,m (22)

P3,m =
(

AT
3,mΣ−1

3,mA3,m

)−1

(23)

3.4 Conditional Distribution p(θ4|θ1, θ2, θ3, D,M)

With the previous construction, the posterior PDFs of prediction error variances givenθ1, θ2, θ3, andD are indepen-
dent. Thus,p(σ2

m|θ1, θ2, θ3, D,M) for m = 1, ..., M are inverse gamma given as follows:

p(σ2
m|θ1, θ2, θ3, D,M) = IG

(
ρ0 +

ndRS

2
,κ0 +

1
2

R∑

i=1

S∑
s=1

εT
i,m,sεi,m,s

)
(24)

3.5 Summary of the Proposed Algorithm

Let θ(n) denote thenth sample ofθ whereθ = [θT
1 θT

2 θT
3 θT

4 ]T .

1. Draw the starting pointθ(0) from the prior PDF or use nominal values as the starting point and letn = 0.

2. Sampleθ(n+1)
1 from p(θ1|θ(n)

2 ,θ
(n)
3 , θ

(n)
4 , D,M), which is a Gaussian distribution with meanµ1 and covari-

ance matrixP1.
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3. Sampleθ(n+1)
2 by samplingθ(n+1)

2,m from p(θ2,m|θ(n+1)
1 , θ

(n)
3 ,θ

(n)
4 , D,M), which is a Gaussian distribution

with meanµ2,m and covariance matrixP2,m for m = 1, ...,M.

4. Sampleθ(n+1)
3 by samplingθ(n+1)

3,m from p(θ3,m|θ(n+1)
1 , θ

(n+1)
2 , θ

(n)
4 , D,M), which is a Gaussian distribu-

tion with meanµ3,m and covariance matrixP3,m for m = 1, ..., M.

5. Sampleθ(n+1)
4 by samplingσ2(n+1)

m from p(σ2
m|θ(n+1)

1 , θ
(n+1)
2 , θ

(n+1)
3 , D,M) for m = 1, ..., M , which is

an inverse gamma distribution.

6. Let n = n+1 and go to step 2, untilN samples are obtained.

Usually some initial portion of the Gibbs sequence is discarded before the stationary stage is reached. In the present
implementation the burn-in period is determined visually by plotting the Markov samples against iteration number.
After the burn-in period, the Gibbs sequence converges to a target PDF that is independent of the starting values.
Statistical measures such as the mean, variance, or marginal distribution can be estimated using the remaining samples.
The Gibbs sampling approach is effective for globally identifiable and unidentifiable problems. For locally identifiable
cases, where the regions of high values of the posterior PDF are well separated, the samples obtained using a single
run may get trapped in the neighborhood of only one of the optimal models.

When the interest is to calculate the most probable model, it can be obtained by iteratively optimizing the condi-
tional PDFsp(θ1|θ2, θ3, θ4, D,M), p(θ2|θ1,θ3,θ4, D,M), p(θ3|θ1, θ2, θ4, D,M), andp(θ4|θ1, θ2,θ3, D,M)
with respect toθ1, θ2, θ3, andθ4, respectively. For Gaussian conditional PDF ofθ1, θ2, andθ3 given the other pa-
rameters fixed at the most current values (shown in Sections 3.1–3.3, respectively), the corresponding optimal point
for θ1, θ2, andθ3 is given by the corresponding conditional mean given by Eqs. (13), (17), and (22), respectively.
The optimal point of an inverse gamma conditional PDF ofθ4 given the other parameters fixed at the most current
values (shown in Section 3.4) is given byρ/(κ + 1), whereρ andκ are given by the first and the second numbers in
the parentheses in Eq. (24), respectively.

4. ILLUSTRATIVE EXAMPLE

4.1 Example 1

For the first example, consider a 10-dof shear building system with one horizontal dof at each floor, and story masses
m̃1 = · · · = m̃10 = 1,000 and interstory stiffnessesk̃1 = · · · = k̃10 = 8,000. The modal data consist of data
from three setups(R = 3). Assume only three sensors are available due to practical limitations. A setup plan is
systematically shown in Fig. 1. In the figure, the squares indicate the sensor location. Data from the first setup consist
of natural frequencies and mode shape components corresponding to dof one, two, and three(n1 = 3). Data from
the second setup consist of natural frequencies and mode shape components corresponding to dof five, six, and seven
(n2 = 3). And, data from the third setup consist of natural frequencies and mode shape components corresponding
to dof eight, nine, and ten(n3 = 3). The total number of dof observed is equal to nine from the three setups. Data
from each setup consist of four sets of simulated modal data(S = 4) with the first three modal frequencies and partial
mode shapes(M = 3). Noisy measured modal data are generated by adding random values chosen from zero-mean
Gaussian distribution with standard deviation equal to 3% of the exact values.

For identification and uncertainty quantification, the same 10-dof shear building system is considered with the
mass and stiffness matrices parameterized as follows:mi = αim̃i, ki = ηik̃i, i = 1, 2, ..., 10. The uncertain param-
eters whose joint PDF is to be updated for this model class are mass and stiffness scaling parameters[α1 · · ·α10]T ,
[η1 · · ·η10]T , overall mode shapes for the first three modes[ψT

1 · · ·ψT
3 ]T , scaling factors[c2,1 · · · c3,3]T , and pre-

diction error variances[σ2
1 · · ·σ2

3]
T . Smaller values of c.o.v are assumed for mass parameters since these parameters

can usually be determined more accurately from the structural drawings than other parameters. Their prior PDFs are
chosen to be Gaussian with mean values equal to 1 and the c.o.v for each equal to 1%. For stiffness parameters that
are not very well knowna priori, relatively larger c.o.v is assumed. Their prior PDFs are chosen to be Gaussian with
mean values equal to 1 and the c.o.v for each equal to 20%. For scaling factors, it is assumed that they can take any
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FIG. 1: 10-dof shear building system.

real value. Flat independent priors are taken for mode shape components. Independent inverse gamma prior PDFs
with ρ0 = 0, κ0 = 0 are taken for prediction error variances (Jeffreys’ non-informative prior). The total number of
uncertain parameters whose joint PDF is to be updated is 59 (10 for mass scaling parameters, 10 for stiffness scaling
parameters, 6 for scaling factors, 30 for three mode shapes, and 3 for prediction error variances).

Following the proposed Gibbs sampling based algorithm, Markov chain samples of mass and stiffness scaling
parameters, mode shapes, scaling factors, and prediction error variances are obtained. The starting point of the Gibbs
sampling is simulated from the prior PDFs of the uncertain parameters. In order to confirm that the Markov chain had
converged to the stationary distribution, 10 independent simulations were performed. The resulting numerical results
were consistent across these simulations, suggesting that the Markov chain is ergodic.

Figure 2 shows the Markov chain samples of some stiffness scaling parameters from one of the Markov chains.
The dashed line indicates the end of the burn-in period. Figure 3 shows the posterior mean estimates of mode shapes
(solid curve) and actual system mode shapes (dotted curve) corresponding to the structural model that generated the
data for the first three modes. The two sets are quite close to each other, indicating the effectiveness of the proposed
approach to identify the overall mode shapes.

Table 1 shows some statistical properties of the posterior marginal PDFs of the mass and stiffness scaling pa-
rameters estimated using the posterior samples. It shows actual system values (column 2), posterior mean (column
3), posterior standard deviation (column 4), and posterior c.o.v (column 5). It can be seen that the posterior mean
estimates are close to those corresponding to the actual system and the posterior c.o.v estimates are much smaller
than those that were initially assumed since the data provide information about these parameters. Table 2 shows the
actual system scaling factor corresponding to the partial mode shapes observed in different setups and the posterior
mean estimates of the scaling factor samples. It can be seen that the posterior mean estimates are close to the values

International Journal for Uncertainty Quantification



A New Gibbs Sampling Based Bayesian Model Updating Approach 369

FIG. 2: Markov chain samples for the stiffness scaling parameters.

FIG. 3: Posterior mean estimates of mode shapes (solid curve) and actual system mode shapes (dotted curve).

from the actual system, once again indicating the effectiveness of the proposed approach to identify the overall mode
shapes.

4.2 Example 2

The system selected for this example is a three-story, three-bay by three-bay steel frame FE model (shown in Fig. 4)
corresponding to example 8 of the illustrative examples for the non-linear FE software OpenSees [25]. The de-
tailed description of the FE model can be obtained from the website (http://opensees.berkeley.edu/wiki/index.php/

Volume 5, Number 4, 2015



370 Bansal

TABLE 1: Statistical properties of the posterior mass and stiffness scaling parameter sam-
ples

Parameter Actual values Posterior mean Posterior std. dev. Posterior c.o.v
η1 1.000 0.995 0.010 0.010
η2 1.000 0.983 0.007 0.008
η3 1.000 0.998 0.020 0.020
η4 1.000 1.024 0.025 0.024
η5 1.000 0.995 0.010 0.010
η6 1.000 0.994 0.009 0.009
η7 1.000 0.981 0.011 0.011
η8 1.000 0.993 0.009 0.009
η9 1.000 0.996 0.009 0.009
η10 1.000 1.000 0.007 0.007
α1 1.000 0.993 0.009 0.009
α2 1.000 0.995 0.009 0.009
α3 1.000 1.005 0.010 0.010
α4 1.000 1.006 0.009 0.009
α5 1.000 1.003 0.009 0.009
α6 1.000 0.982 0.009 0.009
α7 1.000 0.993 0.009 0.009
α8 1.000 0.992 0.008 0.009
α9 1.000 1.005 0.008 0.008
α10 1.000 0.992 0.009 0.009

TABLE 2: Statistical properties of the posterior mode
shape scaling factor samples

Setup Mode Actual system Posterior mean
i = 1 m = 1 1.000 1.00 (fixed)

m = 2 1.000 1.00 (fixed)
m = 3 1.000 1.00 (fixed)

i = 2 m = 1 1.423 1.418
m = 2 1.000 1.004
m = 3 0.941 0.956

i = 3 m = 1 3.075 3.082
m = 2 1.000 0.999
m = 3 0.743 0.753

ExamplesManual). The general properties of the model are briefly described here. It has a 21.95 m× 21.95 m plan
and is 12.80 m tall. Columns and beams have W27× 114 and W24× 94 steel sections, respectively, and each floor
has a 15.24 cm thick slab. Thex direction is the weak direction of the columns. This model is termed as the nominal
FE model.

Modal data for identification and uncertainty quantification are generated using the nominal FE model. The sim-
ulated modal data consist of data from two setups (R = 2). In the first setup, mode shape components corresponding
to dof one and two are available (n1 = 2). In the second setup, mode shape components corresponding to dof two and
three are available (n2 = 2). Data from each setup consist of 10 sets of modal data (S = 10) with the first translational
mode observed in the weak (x−) direction (M = 1). Noisy measured modal data are generated by adding random
values chosen from zero-mean Gaussian distribution with standard deviation equal to 2% of the exact values.
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FIG. 4: Nominal FE model.

For identification and uncertainty quantification, a two-dimensional frame model is used to represent the behavior
of the FE model in thex direction (shown in Fig. 5). Each floor has one translational dof (along thex direction) and
four rotational dof (along thez axis). Translation along they direction is not allowed in the identification process. The
mass for each story is lumped at the floor level. The mass and stiffness matrices for the model are parameterized as
follows:

M(α) =
3∑

i=1

αiM i (25)

K(η) =
3∑

i=1

ηiK i (26)

whereM i andK i are the mass and stiffness sub-matrices, respectively, defined for each story and are estimated using
the properties of the nominal FE model. The assumed structural model for identification and uncertainty quantification
is not equivalent to the nominal FE model used to simulate the modal data.

Masses are assumed to be known with small uncertainty. Thus, the prior PDF for[α1 α2 α3]T is assumed to be
independent Gaussian with mean values equal to 1 and c.o.v equal to 1%. The prior PDF for[η1 η2 η3]T is assumed
to be independent Gaussian with mean values equal to 1 and c.o.v equal to 10%. Flat independent priors are taken for
mode shapes and scaling factors, and a product of independent inverse gamma non-informative prior PDFs is taken for

FIG. 5: Structural model to represent the behavior of the nominal FE model in thex direction.
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prediction error variances. In total, there are 27 uncertain parameters to be updated (6 for mass and stiffness scaling
parameters, 19 for mode shape, 1 for scaling factor, and 1 for prediction error variance).

Following the proposed Gibbs sampling based algorithm, 50,000 samples of mass and stiffness scaling parameters,
mode shapes, scaling factors, and prediction errors variances are obtained. Figure 6 shows the Markov chain samples
of stiffness scaling parameters. The dashed line indicates the end of the burn-in period. Figure 7 shows prior and
posterior stiffness scaling samples projected onto two-dimensional space. The figure shows that the uncertainty for the
stiffness scaling parameters is reduced considerably when the information contained in the data is used. Table 3 shows
some statistical properties of the posterior marginal PDFs of the mass and stiffness scaling parameters estimated using
the posterior samples. It can be seen that the posterior mean estimates are close to those corresponding to the nominal
system and the posterior c.o.v estimates are much smaller than those that were initially assumed. The posterior c.o.v
estimate for the first story is smaller than the posterior c.o.v estimate for the second and third story because the first
natural frequency is much more sensitive to the first story stiffness and the modal data consist of only first translational
mode.

FIG. 6: Markov chain samples for the stiffness scaling parameters.

FIG. 7: Prior and posterior samples for pairs{η1 η2}, {η1 η3}, and{η2 η3}.

TABLE 3: Statistical properties of the posterior mass and stiffness scaling
parameter samples

Parameter Posterior mean Posterior std. dev. Posterior c.o.v
η1 1.006 0.008 0.008
η2 1.001 0.030 0.030
η3 1.015 0.055 0.054
α1 0.991 0.010 0.010
α2 0.987 0.010 0.010
α3 0.984 0.010 0.010
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5. CONCLUSIONS

In this work, a new Gibbs sampling based approach for Bayesian model updating of a linear dynamic system based
on incomplete modal data (modal frequencies and partial mode shapes of some of the dominant modes) obtained
from a structure using multiple setups is proposed. The proposed approach does not require solving the eigenvalue
problem of any structural model or matching of model and experimental modes. The results from the illustrative
examples demonstrate that the posterior samples for the uncertain parameters are reasonable when compared with the
nominal system values, indicating the effectiveness of the procedure. The proposed method allows the uncertainty of
the parameters to be updated efficiently even if there are a large number of uncertain parameters. The case considering
the non-classical modes is left for future work.
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