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Masonry structures constitute a large portion of the built heritage around the world, from the past until today. There-
fore, understanding their structural behavior is crucial for preserving the historical characteristics of many buildings
and in addressing the requirements for housing and sustainable development. Due to its composite and highly nonlin-
ear nature, the analysis of masonry structures has been a challenge for engineers.

This article presents a set of advanced models for the mechanical study of masonry, including the usual micro-modeling
approaches (the masonry constituents, unit and joint, are represented separately), macro-modeling (masonry con-
stituents are smeared in a homogeneous composite), and multi-scale techniques (upscaling from micro to macro is
adopted). An extensive overview of its computational features is provided. The engineering application of such strate-
gies is presented and covers problems from the masonry components level (meso-scale) to the structural element itself,
and ultimately to the level of monumental buildings (super-large). The structural safety assessment and/or strength-
ening schemes evaluation are performed amid the static, slow dynamics or earthquakes, and fast dynamics or impact
and blast ranges.

KEY WORDS: masonry, micro-modeling, macro-modeling, multi-scale, homogenization, URM applica-
tions, seismic load, fast dynamics, out-of-plane

1. INTRODUCTION

Masonry is an ancient but still widely used material. Itsgeshas been mainly fostered by the simplicity of this type
of construction, where masonry units are laid together witiithout the use of bonding mortar. Features such as its
durability, aesthetics, low maintenance, adaptabilibgdysound, and thermal insulation properties (Hendry, 2001
are also important for allowing continuous applicationsrfasonry. Unreinforced masonry (URM) buildings are a
relevant part of the worldwide building stock. These inewgdone, brick, adobe, or earthen masonry structures and
represent, in countries such as Mexico, Pakistan, and Peme than 75% over its total buildings’ inventory. In other
countries (Iran, Australia, Indonesia, or Italy), the tigta percentage is higher than 50% (Frankie et al., 2013). A
similar trend is found in Portugal, with a value of about 5@¥cording to the Portuguese Census of Population and
Housing.

Most of this widespread built heritage has been achieveedas empirical knowledge passed by generation to
generation and, therefore, the structural behavior of URA wften ill-understood. These constructions have been
typically made to withstand vertical loads, and its low sgr/mass ratio makes the buildings rather vulnerable to
dynamic horizontal loads as earthquakes, impact, or biEgirs. This addresses the importance of carrying out
urgent measures in the URM built stock to avoid human andesmictonsequences and to minimize future economic
impacts. Yet, intervening in these constructions is a cemplrocess, due to the lack of structural information and
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due to their high importance. A scientifically-based prededess susceptible to inadequate actions, which clearly
sets a convenient context for the continuous developmemiimierical strategies.

Advanced computational strategies have been develophbd Iadt few decades. Conversely to concrete and steel
structures, the design guidelines for masonry did not gaydhand in hand with the application of innovative meth-
ods. Still, it is currently well accepted that sophistichstrategies, mainly based on the finite element (FE) method,
constitute important tools that deserve more attentiomfifoe scientific community. Three main modeling strategies
for the mechanical study of masonry are: (i) direct numésgaulation or micro-modeling approaches [masonry
constituents, (unit and joint) are represented sepataf@)ymacro-modeling (masonry constituents are smeanea i
homogeneous composite); and (iii) the multi-scale tealesgupscaling from the meso-scale to the macro-scale is
adopted). The mechanical complexity of masonry may demarsme cases, more detailed analysis with a focus on
the component levels. Although accurate, a direct numiesinaulation (micro-modeling) is expensive to carry out
from a computational standpoint and, therefore, macro- @titacale techniques can be more appropriate for large
or super-large problems. An engineering compromise bettreesolution accuracy and the time-cost demand needs
to be assumed which, depending on the nature of the problemconstitute a real challenge.

2. GENERAL SCOPE

Prevailing design rules or analytical approaches stillaithin engineering practice, the most useful in the strcadt
analysis of URM buildings. These pose, however, severdtidehtified limitations that may lead to potential unreal-
istic or conservative results (Theodossopoulos and SROER). Other simplified procedures, as the story-mechanism
(Tomazevi€, 1999) and the equivalent frame-based mdtalgomarsino et al., 2013; Quagliarini and Maracchini,
2017) can also be found in the literature. Such models, hexybardly consider the out-of-plane failure modes and
thus these are generally disregarded in most study caseas. dddable and yet conceptually simple procedures, as
the rigid-body approaches (Konstantinidis and Makris, 2@ Ayala and Shi, 2011) or the well disseminated kine-
matic methods (D’Ayala and Speranza, 2003; Griffith and Mage 2003; Calvi et al., 2006), are useful to provide
closed-form solutions under dynamic excitations but arg eemplex for walls subjected to two-way bending.

Sophisticated FE computational strategies deserve mteetian from the scientific community. Several ad-
vances have been achieved in the last few decades and thmessitute important (sometimes indispensable) analysis
tools. For the masonry field, it is recognizable that twosdavels are of interest when analyzing structural behavior
(Lourenco, 2009; Roca et al., 2010), the macro- and the reeales (Fig. 1). Again, three main modeling strategies
can be put together, namely (i) the direct simulation or tierermodeling; (i) macro-modeling; and (iii) multi-saal
modeling.

In the micro-modeling approach, both masonry componemii¢s(and mortar joints) are explicitly represented.
These are certainly capable of well reproducing both in-@urtebf-plane orthotropic nonlinear behavior of masonry

Macro-scale Meso-scale

Possible modelling strategies:

Mortar Unit "Unit"

Interface R i
\ / Unit/Mortar / Joint! Composite
I

m— e

Detailed micro-modelling Simplified micro-modelling multi-scale modelling
(homogenization)

Meter [m] Centimeter [cm]

FIG. 1: Representation of the three scales considered in the &alfymasonry for this study: macro-scale and meso-scale.
Definition of the modeling strategies adopted to represexgtanry.
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but are characterized by long processing times, being @adgmmended for limited size structural problems (Lotfi
and Shing, 1994; Giambanco and Rizzo, 2001; Lemos, 200idpBajet al., 2008; Adam et al., 2010; Macorini and
Izzuddin, 2011, 2013; Sarhosis et al., 2014). The macroaiugistrategies smear out the heterogeneous assemblage
of mortar and bricks into a fictitious homogeneous anisatromaterial. The use of closed-form laws to represent the
complex phenomenological behavior and damage of the masaay be cumbersome, as it may require a calibration
step (usually achieved by thorough experimental campgididmvever, this approach allows studying large-scale
structures without the drawbacks exhibited by meso-modébhanasekar et al., 1985; Lourenco et al., 1997; Berto
etal., 2002; Roca et al., 2013).

Multi-scale FE (or FE) methods are in-between the latter two FE modeling schefresframework is being
used to investigate the response of composites with differaures (Spahn et al., 2014; Trovalusci et al., 2015; &rec
et al., 2017; Leonetti et al., 2018). It typically relies omaso- and macro-transition of information and is, thersfor
designated as two-scale or ¥Bpproaches. Full continuum-based?Fpproaches result in a good compromise
between solution accuracy and computational cost. Neslexth, these methods still constitute a challenge if one
desires to account for the material nonlinearity (Geerd.ef@10; Otero et al., 2015). In fact, the constant need
of data between the macro- and meso- scales constitute entimuis issue, because a new boundary value problem
(BVP) must be solved numerically for each load step and ih &swss integration point. The utility of the approach is
compromised due to the involved computational time, and thllicontinuum-based FEapproaches are seldom used
for dynamic purposes or for complex structural analysisaflequate possibility is the use of a two-scale simplified
strategy, for instance, by using a kinematic theorem oftlemialysis at a macro-level to obtain the homogenized
failure surfaces with a very limited computational effate(Buhan and de Felice, 1997; Milani et al., 2006; Cecchi
and Milani, 2008). Yet, the use of discrete FE-based metlabdsmacro-level seems to be a promising alternative
(Silva et al., 2017b; Casolo and Milani, 2010; Milani andlliy2011).

In this context, three advanced FE-based models, for wiiehatithors gave their contribution, are hereafter
addressed and each one belongs to one of the aforementiasiing strategies (Fig. 1): a simplified micro-model,
amacro-model; and a simplified two-scale fFEodel. Note that the strategies can handle the masonrgdiiéning
behavior, anisotropy, and its strain-rate dependencynfagé dynamic cases. Furthermore, all the strategies have
been implemented in advanced FE softwares.

3. PROPOSED MODELING STRATEGIES
3.1 FE Mesoscopic Model

An FE mesoscopic model first introduced by Lourenco (199&)iw the so-called simplified micro-modeling ap-
proach is presented next. The interface model for masorgyheaability to reproduce the loading strain-rate effects
on the material properties (Rafsanjani et al., 2015b). Atirsuirface plasticity model, the so-called composite in-
terface model, is typically considered for the mortar jeiahd is suitable to reproduce fracture, frictional slipd an
crushing along the interface elements.

The assumption that all the inelastic phenomena occur iimtedace elements leads to a robust type of modeling,
which can follow the complete load path of a structure uht! total degradation of stiffness. For a 3D configuration,
the linear elastic relation between the generalized sisemsd strains of the interface FE is givendoy: D¢, whereas
the stiffness matrix idD = diag{k,, ks, k:} (the subscript. refers to the normal and the subscriptandt to the
shear components).

The constitutive interface model is defined by a convex caitpgield criterion with three individual functions,
specifically: (i) a tension cut-off criterion designatedfaserion,1 @and defined in Eq. (1); (ii) a Mohr—Coulomb shear
criterion designated af.itcrion,2 @and defined in Eq. (2); and (i) a cap in compression des@has . iterion,3 and
defined in Eq. (3). Softening behavior is represented irhallhodes. The tensile criterion [Fig. 2(a)] reads:

fcritcrion,l(aa K1) = 0 — 01(k1) and 61 = frexp <—£K1> (1)
f
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FIG. 2: Multi-surface plasticity model adopted for the mortar jsi(interface FEs). The behavior of quasi-brittle matsriaider

(a) tensile loading (mode-J; is the tensile strength); (b) shear loading (mode-i$,the cohesion) accounting with a potential pre-
compression level; (c) compressive lodd is the compressive strengthhandm are the peak and medium values, respectively).

The shear criterion [Fig. 2(b)] is given as:

— _ (&
fcriterion,Z(o-a Kz) = |T| + Gtand)(Kz) — Gz(Kg) and 02 = cexp (WK2> (2)
f

For the compressive yield function [Fig. 2(c)] and using drirdorm:

.fcriterion,3(0-a KZ) = 1/2 (O-TPO-) +pT0- - 6§(K3) (3)

Here, o is the generalized stressef,is the interface bond strength,is the interface cohesion strength,is the
friction angle;P is a projection diagonal matrix angla projection vector based on material parame'(éés;G? are

the mode-l and mode-II fracture energy terms, respectialyc,, ando; are the effective stresses of each adopted
yield functions governed by the internal scalar variaklgs,, andkgs, respectively. Note that the typical compressive
hardening/softening laws(k3) is composed of three branches, as observed in Fig. 2(c)hvelnecin agreement with
theo.1(k3), 0.2(K3), anda.3(k3) laws defined by Lourenco and Rots (1997), and presented.i(dEdNote that the
subscripts, m, andr for both the yield stress value and scataindicates the initial, medium, and residual values,
respectively. The compressive fracture eneﬂi@;‘/ depicted in Fig. 2(c) corresponds to a material input patanc#

the model and allows computing the residual strength vaju@rom the peals, one).

_ _ _ 2K K2
O'C]_(Kg) =0; + (0'p — 0'1') &3 —g (43.)
Kp K5
K3 — K 2
0c2(K3) = G + (G — Gp) <7p ) (4b)
Km — Kp
K3z — K 2 Om — O
Oc = 0y Om — O S s = 271” P 4c
Ge3(k3) =0, + (0 Op) exp(mgm — Ur) m P— (4c)

It may be highlighted that a penalty approach is not followgdhe adopted interface FEs to phenomenologically
represent the behavior of masonry crushing. Here, pei@trand overlapping between neighboring brick units can
occur which does not blur the adequacy of the strategy. Timamjc interface model has been implemented in
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the software DIANA (2017) (strain-rate independent) andBAQUS (2013) (strain-rate dependent). In the latter,

a FORTRAN user-subroutine was developed, and the mateddkehis introduced by a failure criterion. A Euler
backward algorithm (linear predictor-plastic correctppeoach) is adopted for the stress update process. The user-
subroutine VUINTER provided in ABAQUS is involved to definentact interface behavior. The interface material is
assumed to be bonded to each of two contacting surfaces @tal/master surfaces) and, again, the material strength
values are sensitive to the load strain-rate level [see drapr and Rots (1997) and Rafsanjani et al. (2015b), for
further details].

3.2 FE Macroscopic Model

Several continuum models have been presented in the literatibeit especially indicated for concrete-like matisti
such as the well-known ‘Barcelona’ model by Lubliner et 2889), the ‘Microplane’ model (Bazant et al., 1996), the
Concrete Damage Plasticity (CDP) model (Lee and Fenve®)188d the Pontiroli, Rouquard, and Mazars (PRM)
model presented in Pontiroli et al. (2010). Here, a plastimbntinuum model is presented for the static and dynamic
study of masonry. The model stems from the anisotropic nanth model for masonry shells and plates proposed by
Lourenco (1997, 2000), in which the so-called compositddyeriterion is defined. The formulation is briefly recalled
here for a 3D stress space, whereas the stress and strainstans typically represented as six-components vectors
owing the symmetry conditions, and given as follows:

T
0 = {va Oy, GzaTmyaTyzaTmz}

T
€= {EI, Eys 527measz;Yzz}

The anisotropy of the material behavior is considered sifiiferent hardening/softening regimes can be introduced
for different axes. The so-called composite yield surfaamifenco, 1997) is adopted and, therefore, a total of three
Rankine-type yield criterion are defined in tension and &tyile criterion in compression.

3.2.1 Tension: A Rankine-Type Criterion

An adequate formulation of the Rankine criterion reads asgesfunction governed by the first principal stress and
one yield value; that rules the hardening/softening of the material:

2
o, +0o 0, — O _
fi= % Y+ \/(72 y) + 12, — 01(K¢) (5)

wherex; is the scalar that governs the amount of hardening/sofje@onsidering the three symmetric planes
yz, andzz, designated as= 1, 2, and 3, respectively, one can write Eq. (5) in a matririfor

1/2
fi= (V2&l Pe) +1/2n e, (6)

Here, &; is the reduced stress vector given §y = o — 1,. The stress vectos represents the six-components
of the stress field and reads as = {o0.,0,,0.,Tsy, Ty:, T22} . ; the back stress vectay, is given asn; =
{642 (ke 1), Ory(ke1),0,0,0,0}7 for the zy-plane, asy, = {0, 54, (k:.2), 0t (k¢.2), 0,0,0} 7 for the yz-plane, and
N3 = {012 (k¢.3), 0, 01 (ke 3), 0,0, 0} T for thexz-plane. Likewise, the projection vector reats= {1, 1,0,0,0,0}7,
m = {0,1,1,0,0,0}7, andms = {1,0,1,0,0,0}T. The projection matrix?; ; is defined for each of the indexes 1,
2,3 as:
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1/2 -1/2 0 0 0 @ 0 0 0 0O 0 (@
0 /2 0 0 0 O 0 1/2 -1/2 0 0 O
0O 0O 0O /2 0 0 O
Ptj_: Ptz
’ 2094 0 O ’ 0O 0 O
sym 0O 0 sym 200, O
L 0] L 0]
i i (7)
/2 0 -1/2 0 0 O
0 0O 0 0 O
/2 0 0 O
P,3=
0O 0 O
sym 0 O
L 2003 |

Itis important to recall that the yield stress val@es(k; ; ), 0+, (k:,;), 0+- (K ;) are described by exponential softening
rules:

_ h T
Otz (Kei) = frmexp ( Gﬁt Kt,i)
tx

h
‘_7ty('<t,i) = [ty exp ( Gitty Kt,z‘) (8)
y

hfiz
012 (Kei) = fez GXP<—Gft Kt,i)

ftz

wheref.;, fi,, [+ are the material uniaxial tensile strength values@ng,, G.,, G +. the material tensile fracture
energies according to the material axes; and the equivalent length related to the finite element sizzéat and
Oh, 1983), aiming the fracture energy regularization. Aassociated plastic potentig) has been considered and

reads as:
T 1/2 T
g = (1/28] Pyi&;) " +1/2n]E, ©)

whereP, ; is the projection matrix that represents the Rankine mdistiv, given by Eq. (7) for amx, oz, az = 1.
The inelastic behavior is ruled by a strain-softening higpsts, in which the scalar in rate formp; is written in terms

of the plastic multiplier raté\t_,i, i.€.,Ke; = A

3.3 Compression: A Hill-Type Criterion

A Hill-type criterion is used to characterize the yield cdimh of masonry in compression assuming a rotated cen-
tered ellipsoid shape. The formulation is considered in3bestress space for convenience and includes different
compressive strength values along the different matexid.dn a matrix form, the yield criterion can be written as:

fa=(1/2 O'TPCO')l/3 — G.(Ke) (10)

wherea. is the yield value along the three material axes givewbik.) = \Vﬁcm(Kc)ﬁcy(Kc)c‘rcz(Kc). The projec-
tion matrix P, is computed through Eq. (11):
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O—C ('_)-CZ
2 ggm B B, 0 0 0
27l 9 0 0 0
ch _ _
P, = p7wlw g 0 0 (11)
O-CZ
2]/1 0
Sym 2y2 O
i 23]

The parameterg,, 32 andys, vz, v3 influence the shape of the yield criterion. The paramediersontrols the cou-
pling between the normal stress values and should be obtakperimentally (Lourenco, 1997), and the parameters
Y; are obtained ag: = (fcmfcy)/Ti,ci Y2 = (fcy.fcz)/’fi,ci andY3 = (.fcmfcz)/Tic- Here,fm, fcyv .fcz are the
uniaxial compressive strengths in the y-, andz-directions, respectively and, .. the fictitious material pure shear
strength in compression. The inelastic law of the mateni&hé compressive regime comprehend a parabolic harden-
ing followed by a parabolic/exponential softening, wherddferent fracture energy values may be defined according
to the material axes, i.6G tcq, G fey, @ANAG ¢

The anisotropic macro-model has been implemented in thermed software DIANA (2017) (strain-rate inde-
pendent) and in ABAQUS (2013). In the latter, a FORTRAN usdrroutine VUMAT was developed, in which the
material model and the procedure to update the stress \auticstate variables has been provided.

3.4 A Simplified Multi-Scale (FE 2) Homogenization-Based Model

A simplified two-step numerical procedure has been recémttigduced by the authors (Silva et al., 2017a,b). The aim
has been the prediction of the static and dynamic mecharspbnse of periodic masonry structures, whereas both
the masonry orthotropy and material nonlinear behaviotearepresented under an attractive computational burden.
The strategy makes use of a classical first-order homog@nizecheme and is formed by three steps: (i) definition
and solution of the meso-scale problem; (ii) implementatibthe meso-to-macro transition; and (iii) solution of the
macro-scale problem.

3.4.1 Meso-Scale (FE-Based Mesoscopic Model)

A unit-cell homogenization approach is employed at a mestes The strategy can be designated as an upward pro-
cedure (i.e., information regarding the mechanical chareaation at a cell level is transferred into the macroesca
Different numerical models can be employed at a meso-scaletherefore, the accuracy of the strategy is highly
dependent on the accuracy of the latter. It relies on a mitodeling approach and involves solving a mechanical
problem on a representative volume element (RVE) to derreeage field variables. The authors have employed a
Kirchhoff-Love (KP) and a Mindlin—Reissner (MP) plate FE aets but it is possible to use a three-dimensional
model (3D DNS); see Silva et al. (2018) for further detaileeTunits are elastic and the material nonlinearity is
assumed to be lumped in the joints aiming at the decreaseeafdmputational effort. This assumption seems to
be specially adequate for strong block masonry structi8etha, 1978; Herbert et al., 2014). Units are modeled as
guadrilateral FEs and mortar joints through zero-thickreterface FEs. The multi-surface plasticity model présgn
in Section 3.1 has been considered for the interface element

The RVE needs to be statistically representative of the aaacale level (Hill, 1965) and sufficiently small to
respect the principle of scales separation of first-ordemdgenization theory. Since a bespoken model for periodic
masonries has been proposed (Silva et al., 2018), the reeodations by Anthoine (1995) are followed for the
definition of the RVE within a running-bond and English-bandsonries. Accordingly, a rectangular pattern with
more than one brick unit and within a rectangular basic sailéfined to represent the RVE of study, as seen in the
next section. The RVE is herein denoted Bs. The kinematical description of the homogenization-basedels for
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the in-plane case relies on the assumption that the magriosstnain tensol is obtained as the volume average of
the mesoscopic strain field,, = ¢,,(y) at each point over the associated RVE:

E- L / Em dV (12)
Q7Yl,

whereV,,, is the volume of the RVE. The mesoscopic strain field can bemeosed into a macro-scale and meso-
scale contribution. The latter is referred to as an addifigeomposition of the mesoscopic strain tensoy, =
dem(y), and given asde,,, = 8E + V*u,,, where$E is the applied constant strain tensor over the RVE and
Viu, is the gradient of the fluctuation displacement field. Comdidy thato ,,, is the mesoscopic stress field, upon
RVE equilibrium, the homogenized generalized stressedeatterived. The Hill-Mandell principle is based on an
energetic equivalence between the macroscopic and megsoseurk, as follows:

1
2:5E:—/ O & 5Em dQ) (13)
Qo

in which X is the macroscopic stress tensor. According to the assuniditive decomposition of the mesoscopic
strain tensor, one may obtain the macro-homogeneity fpimeis:

2:5E:—/ amzéEdQJri/ Gt VS0, dO2 (14)
Qm Vin Ja,,

for any kinematical admissiblkeu,,,. Periodic boundary conditions are assumed to solve thedaoyvalue problem.
Such consideration is extensively found in homogenizatiatedures (Blanco et al., 2016) also for the particular
case of masonry structures (Cecchi and Sab, 2002b; Milah, @086a; Otero et al., 2015). The periodic boundary
conditions lead to a kinematical field that enforces antigukicity of the tractions to occur. Due to the periodicitly o
the displacement fluctuations on the boundaries, Eq. (I#beasimplified and expressed as:

1

>:0FE = —
Vm Qo

Om : SEdQ, Ve (15)

Thus, the corollary of the Hill-Mandell principle is thaethomogeneous macroscopic stress teBsocan be written
as the volume average of the mesoscopic stressdigld= o,,,(y) over the RVE:

1
DI — dQ) 16
- /Qmom (16)

The variational principle and the use of periodic boundamyditions allow concluding that the external surface trac-
tions and body force field on the RVE are reactive terms oweirttposed kinematical conditions. These kinematical
boundary conditions are dependent on the deformation moatesidered at the meso-mechanical level. Thus, the
in-plane static equilibrium of the RVE is reached for eaafeknatic constraint considered, without any external sur-
face traction and body force terms. The variational prilecimlds when accounting for the out-of-plane quantities to
assure the energy consistency between scales. The déelies in the replacement of generalized stresses through
moment and force terms.

The homogenization technique is followed and, by solvirgittternal static RVE equilibrium using a classical
FE-procedure, the homogenizBdand E quantities are derived. Furthermore, the macro-stregslesare obtained
by through-the-thickness integration of the homogeneaasmstresses according to Eq. (17); wheteinrefers to
the indexz ory (M4, M, M,,). The numerical integration is performed accounting ohlymid-plane reference
surfacew. The obtained homogenized moment-curvature relationdefieed per unit of length.

z/2
Mij = / Om,ij? dz (17)

—z/2

International Journal for Multiscale Computational Engiering



Computational Applications in Masonry Structures 9

3.4.2 Macro-Scale (FE Discrete Model)

Discrete FE-method based strategies, designated in #ratiite as rigid body spring models (RBSMs), represent
masonry as the assembly of rigid blocks interconnected bgrelie interfaces whereas the deformation is repre-
sented through normal and tangential springs. RBSMs angostgul in the theoretical background of Kawai (1978)
works. Yet some differences exist between RBSMs and otlseratie-based strategies, as the discrete (or distinct)
element method (DEM) or the applied element method (AEM)falet, FE methods may not be so efficient for
problems in which several physical discontinuities existiie media leading to a situation where several distinct
bodies exhibit large relative movements. In such problemt®re the contact conditions vary during the analysis
and large displacements are expected, using the DEM sjrédeghe masonry modeling seems the best choice
(Cundall and Hart, 1971; Lemos, 2007). DEM is, however, bame explicit numerical procedures and its usage
within a dynamic analysis of masonry structures can be pitveé due to the involved computational process-
ing times. Concerning the AEM, first proposed by Meguro angeFRDin (2000), it has features analogous to the
RBSMs. It represents masonry through the assembly of rilgichents interconnected by discrete interfaces that
are also modeled through normal and shear nonlinear sprifgs main differences between AEM and RBSM
are that the former assumes recontact between neighbasogetd elements after the occurrence of collapse and
that it tends to employ a micro-modeling approach to descniasonry (Guragain et al., 2006; Malomo et al.,
2018). The latter can be a contentious issue when enginglarger structures. In converse, RBSMs allow to adopt
coarser scales meshes within a macro-modeling approaaihndsonry and, therefore, increase the computational
efficiency.

Several RBSMs are mentioned in the literature, as the oneeimgnted by Calio et al. (2012) for the in-plane
study of masonry and extended to the out-of-plane apptiodty Pantd et al. (2017) and Casolo (1999) who in-
vestigated the out-of-plane behavior of a masonry fac@tie.latter RBSM strategies are quite promising from a
computational standpoint but demand the calibration ofi ble¢ material and mechanical properties assigned to the
nonlinear springs. Such a procedure can lead to loss of thsiqah meaning of the input parameters and may be
arguable in cases where experimental evidence is lackiegcélsome authors coupled different RBSMs within
two-scale strategies, wherein the material informatiotinefsprings is computed through homogenization strategies
For instance, Milani et al. (2006) implemented a limit as&#ybased two-scale strategy in which an RBSM, rep-
resented through rigid triangular constant stress elesramd rotational interface springs, is linked with a simple
homogenization strategy for the study of URM panels. SinyilaCasolo and Milani (2010) and Casolo and Uva
(2013) adopted, respectively, a homogenization-basedMRBS$ng quadrilateral rigid elements and rotational inter-
face springs for the nonlinear static and dynamic analyfsisasonry structures, respectively. The existing strategi
typically focus on the out-of-plane behavior only and in tise of simplified analysis methods at a macro-scale,
as limit-analysis, to improve the strategies robustneghenpresence of material softening for quasi-static prob-
lems.

In such a context, a discrete FE-method based procedurepesed and implemented into the advanced finite
element software ABAQUS (2013). It stems from the RBSM mautelsented by Silva et al. (2017a,b), which is
suitable only for the out-of-plane analysis of masonrydtices. Thus, an improved and innovative RBSM is here
addressed as it incorporates both the in- and out-of-plahavior of masonry being also coupled with the presented
novel homogenization strategy.

The RBSM model is composed by the assemblage of discreteitptedl rigid plate elements interconnected,
at its interfaces, through a set of rigid and deformablestfSs; see Fig. 3 (equivalent to spring elements). The truss
elements govern both the deformation and damage of thetsteuly being able to mimic the presence of the in-
and out-of-plane failure modes considered in Fig. 3 andiwithdecoupled characterization. These can append the
material information of the meso-scale homogenized steptlams represent the masonry texture via an equivalent
continuum medium.

The two-scale simplified procedure allows processing theom® macro-scale transition only once and, there-
fore, achieve low computational times. The main advantajdke procedure are threefold: (1) several strategies
with different complexities can be employed at a meso-s¢a)ehe concrete damage plasticity (CDP) model imple-
mented in ABAQUS can properly characterize the constiéutinaterial model of the truss elements at a macro-scale,
as it suitable to fully reproduce the homogenized respofigeeanasonry RVE; and (3) the computational robustness
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FIG. 3: Description of the basic in- and out-of-plane FE truss/begstems of the discrete macro-unit cell

in presence of material softening can be guaranteed foii-gtet& problems by arc-length procedures available in
ABAQUS software.

Specifically, the model combines a stress-based plastiditya strain-based scalar damage and can reproduce
several macroscopic properties for tension and compressgimes, such as different yield strengths which repre-
sent masonry orthotropy; different stiffness degradatmlines which represent the masonry full softening behavior
different recovery effect terms; and rate sensitivity, ethcan increase the peak strength value depending on the
response strain rate. Moreover, it does consider the lattére presence of interfaces dynamic and/or cyclic load-
ing and is integrated using the backward Euler method. A gérmerview of the main features of CDP for the
rate-independent model are presented next; see Lubliaér@989) and Lee and Fenves (1998) for further details.

Effective stresses govern the plastic part of these mo@ebs§l and Jirasek, 2006) and the stress-strain relation-
ship is ruled, as referred, by an isotropic damage scalactify the elastic stiffness of the material. The nominal
stress tensow reads:

c=(1-d)E§: (e—¢")=E: (e — &) (18)

whereE¢! is the initial elastic stiffness of the materialjs the damage parameter, which defines the stiffness degra-
dation (O for an undamaged and 1 for a fully damaged mate&ad) is designated as andd, for tension and com-
pression regimes, respectivelyjs the total strain tensog?! is the plastic strain tensor, add is the initial elastic
stiffness of the material affected by the damage paramigtersiegraded initial stiffness given iy = (1 — d) E§'].

A nonassociated flow-rule is assumed for the plasticity rhadd given by:
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. 0

. pl g _

8p = 7\6—(_: (0', Kp) (19)
in which ¢”! is the rate of the plastic strain,is the rate of the plastic multipliey,, is the plastic potentialy is the

effective stress tensor, ang is the hardening/softening variable. The rate of the hanggsoftening variable,, is
related to the rate of plastic strain given by an evolution kg as seen in Eq. (20):

Kk, = h(0,k,) : & (20)

The CDP model uses a yield function based on the works of hablkt al. (1989) and Lee and Fenves (1998). The
hardening parameter that controls the meridians shapeeofithd shape is given b¥. = 2/3, which leads to an
approximation of the Mohr—Coulomb criterion.

Hence, following the input requirements for the CDP mode$ mandatory to obtain effective stress and strain
curves for each angle of the interface and for each bendimgenbdirection. In other words, the material orthotropy
is reproduced at a structural level because the approaetsdife possibility to reproduce different input stresaist
relationships according to the trusses plane. To what eoadke in-plane behavior, the stress quantities are irect
derived from the mesoscopic homogenized values scaleddingao the length of the macro-interfaces. For the
out-of-plane behavior, the conversion from moment to stuatues must be achieved following Egs. (21) and (22):

M
OBending truss — (21)
ABendingtruss X €

M
ATorsional truss X H
Here, M is the bending moment per unit of interface lengththe length of each quadrilateral panélié the influ-
ence length of each truss and is equal to half of the meshisizd/2), tis the thickness of the walllgending truss
and Arorsional truss @re the bending and torsional truss areas, respectivaedyaangiven by 0.5< e x H wheree
(value of 10 mm) is the gap between the rigid plates, whichllgeshould be zero but in practice is assumed small
enough to be able to place trusses between elements.

At last, the stress homogenized input curves may be propetlgrated (so-called regularization). An elastic
calibration for the stress curves is conducted. The lattguaranteed separately for both in-plane and out-of-plane
modes and, therefore, a decoupled behavior is derivedil\Bi)y assuring the energy equivalence between the dis-
crete mechanism and a homogeneous continuous plate elénhoantbe easily derived that, for both case studies, the
Young’s moduli of axial, shear, bending, and torsionaldrelkements is given as:

(22)

OTorsional truss —

. S E..e . ] G.. H2
i plane axial truss _ & . in-plane shear truss _ Yy 23
v AL +2¢ 4e(2L + €) (23)
E?endingtruss _ Eiit4H . Torsional truss _ Zémyt4 (24)
“ 12(1 — v3)(H + e)e3H’ 3H?¢(2L +¢)

whereG,, is the homogenized shear modulus given directly by the stft@e shear meso-scale homogenized
curve; E;; is the Young’s moduli of the masonry in the directiar{i represents the cartesian axisr ); andv is the
Poisson coefficient for the homogeneous media. After theregion and aiming to fulfill the input requirements for
the CDP model in ABAQUS, the information regarding the padlitire behavior may be introduced for each element
that features material nonlinearity in terms of effectitress and inelastic straéf* values (i.e., the truss elements).
Since truss elements define the material behavior of the aviatgrfaces, the system will undergo only uniaxial
loading conditions. Hence, for the case of uniaxial loadingdition, the inelastic strain value must be obtained for
each point of the post-peak homogenized curve accordingt¢2b):

gk =g — g (25)
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whereeg! is the elastic strain corresponding to the undamaged rahtnde is the total axial strain of the multi-
linear stress envelope. If the damage paramétae introduced, the plasticity model is thus coupled witlamdge
description and is suitable for the cyclic behavior desmipof the material. Again, for the case of uniaxial loading
condition and for a given truss element, the plastic strainese?’ are calculated for each point of the input curve
through Eq. (26). Since the permanent plastic strains sakiean be just positive or null, the latter can constitute a
good checkpoint to foresee if the damage parameters hangbegerly computed.

. d of

ol _ or _ o 26
R W 57 (26)

In continuum FE-based frameworks, in which material nadiity and cracking are attributed to continuum
elements [through, for instance, the proposed anisotnogicro-model or other models, as the smeared crack by
Rots et al. (1985)], the strain localization is a key issué @u@ regularization of the FE material constitutive law is
necessary to achieve mesh objectivity of the results. kiedl multi-scale continuum, FE approaches (see Cervera
and Chiumenti, 2006; Petracca et al., 2016) an alike praesdumplemented. This is typically based on the crack
band theory by Bazant and Oh (1983), whereas the definifiancharacteristic length that addresses both scales is
required to affect the fracture energy of the material dartste model.

For the present homogenization-based strategy, the mgsttiolty problem resorts only on the correction of
the material homogenized data according to the discreteammaesh refinement rather than the strain localization
issue at both scales. This is so because, at a meso-scdlghbanaterial nonlinearity and cracking are placed on
mortar joints that are modeled in a discontinuous (interilements) way (Borst et al., 2006); and, at a macro-scale,
an RBSM is adopted in which material softening and crackénginped on individual 2-node linear truss elements
(one integration point), for which a characteristic length is generally given (ABAQUS, 2013; DIANA, 2017).

Thus, the so-called regularization step is here perforrmaihg to correct the elastic stiffness and post-peak frac-
ture energies of the stress-strain curves that serve asfmpihe CDP model. The derived meso-scale homogenized
curves (per interface unit length) are first scaled, acogrth the macro-interface lengtii, and second affected by a
regularization factoyf,. depending on if it represents an in-plane (normal and sloea) out-of-plane (flexural and
torsional) mode.

Consider, for instance, thd = [e1 €2+ - €n_1 &n) andy = [01 02 -+ 0,_1 O,] are then-dimensional
vectors which define, respectively, thee homogenized curve being regularizedi$ the number of points of the
curve). After scaling the stress valuesbéccording to the macro-scale mesh size, it is required tdaeige the strain
values ofE. In this regard, the regularization factfyr, is, for a given truss element set, defined as the relationdsst
the elastic stiffness of the-e curve under study and the calibrated Young modulus obtdoreshch deformable truss
through Eqgs. (23)—(24). The procedure to compute the nederelastic stiffness value is assumed to be performed
for the designated poirtt’; the point of theo-¢ homogenized curve that has a stress given as one-third qiethie
value. Thus, is computed ag, = 0¢/(ec FEcalibrated) Where,Ecatibrated 1S the corrected Young modulus obtained
for each truss type following Eqs. (23)—(24).

In other words, the regularization terms can be simply emitsf e = £, o,/ pirplancaxialtruss g g pmode-II
= Gy o/ ERplanesheartiuss for the in-plane macro-trusses; and gg"dne = F,; o/ Ep "8t o frorsion —
E.yc /Egt;;fsm“al““SS for the out-of-plane macro-trusses. Such parameteedfects all the strains of the homoge-
neous stress-strain curves of the corresponding trusgesorBecting the strain axis to calibrate the elastic stiffs
value the operator affects, as well, the post-peak curainstand so, in an implicit way, the fracture energy itself. |
may be pointed out that, for the out-of-plane truss elem@ah the torsion and bending elements), the scaling and
the regularization steps are performed only after the amime of homogenized moment values into stress quantities
according to Eqgs. (21) and (22).

3.5 Strain-Rate Dependency of the Modeling Strategies

The use of static strength properties can lead to inaccueatdts when evaluating the masonry behavior under fast
dynamic actions since these properties exhibit an enhastieaccording to the strain rate level of the applied load.
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Research mainly centered on concrete-like materials cdourel in the literature, where assumptions intrinsically
related with material effects are reported to explain thengmena, such as the lateral inertial confinement, end
support friction and scale-effect (Le Nard and Bailly, 208@o0 et al., 2013; Hao and Hao, 2013).

Experimentation is, in the field of fast dynamics, still aigher level with respect to numerical modeling (Buchan
and Chen, 2007). Some laboratory tests have been perfooradhluate the response of the masonry under such
extreme loads, see Dennis et al. (2002), Baylot et al. (20080 and Tarasov (2008), Pereira et al. (2015), Pereira
and Lourengo (2016a,b). In converse, few numerical stuoiiethe response of masonry under blast or impact actions
are found in the literature: Wu et al. (2005), Burnett et 20Q7), Zapata and Weggel (2008), Macorini and Izzuddin
(2014).

The strain-rate dependency of the masonry can be represémtaigh the use of visco-elastic models aiming
at strain-rate regularization (Sluys and De Borst, 1992yrGia and Reynouard, 2003). This seems an adequate and
numerically convenient strategy, especially if one naitt®at introducing, for instance, the well-known Duvaut and
Lions (1976) model within an FE plasticity model is well dogented. Yet the definition of a viscosity regularization
parameter still lacks objectivity and requires extensesms#ivity studies for the case of masonry.

In such a context, the presented inviscid advanced FE fatouaks have been formulated to account for this
phenomenological feature of masonry by making use of dyoamerease factors (DIFs). The authors believe that
these numerical models may strongly contribute to furtieaaces on this complex topic. The DIFs directly affect
the static material properties adopted and can be intrablircéhe strategies via: (i) a strain-rate law, typically a
logarithmic curve, for each selected parameter; or (ii)stmite DIF value, independent from the strain rate level,
which is a priori assumed and adopted as constant. The former may yield malisticevalues, but the latter is
straightforward, simple and more aligned with normativepgmsals. These data can be deduced through experimental
campaigns as seen in Pereira and Lourenco (2016a) and dak@aeasov (2008).

According to the information at disposal, different DIF wa$ are obtained for each mechanical parameter of
masonry, which allows the expansion or contraction of thengfth envelope, thus depending on the load strain-rate;
as schematically described in Fig. 4 for the case of the caitgpmterface model.

4. APPLICATIONS

4.1 Engineering a Meso-Scale Mechanical Problem

The majority of the existing research on periodic masonrgl dégth running-bond texture within the case of a
single-wythe wall (Zucchini and Lourenco, 2002; Milan)(B; Pau and Trovalusci, 2012; Taliercio, 2014; Rec-
cia et al., 2018). Some features still somehow seem ungesiiigated, as: (i) the analysis of the effect of potential

Initial failure envelope

———— Failure envelope affected by the DIFs

Compressive
cap mode

FIG. 4: Schematic representation of the yield envelope for the asitpinterface model adopted affected by the DIFs
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discontinuities in the masonry thickness, when two- orghsgthes of masonry are present; (ii) the effect of three-
dimensional shear stresses; and (iii) the study of othéogiertextures, as the English-bond.

In this context, a study at a meso-scale is presented neid.iFhimed to assess the mechanical effect of the
mid-thickness vertical joint of English-bond masonry walhd the effect that three-dimensional shear stresses play
The conclusions are drawn in terms of moment-curvaturessurv

The selected case study concerns the English-bond masstey texperimentally by Candeias et al. (2017). The
problem is schematically described in section Fig. 5(ajctvlaccounts for three unit-cell models. The first-unit cell

3D DNS FE model
(without discontinuity)

3D DNS FE model

Kircchhoff-plate FE model
(with discontinuity)
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FIG. 5: Meso-scale mechanical study of an English-bond masontlyma)(a) numerical models assumed for the RVE description;
(b) results obtained in terms of moment vs. curvature cung@sg a KP model and two DNS 3D models: one that considers, and
the other that excludes the existent vertical joint on the-thickness. Deformed configurations at peak and ultimagt-peak

point are plotted f

or both models.
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model advents from a Kirchhoff-plate mesoscopic model inctvithe aforementioned homogenization scheme (see
Section 3.3) is followed. The remaining two unit-cell mal&llow a direct numerical simulation (DNS models)
or a micro-modeling approach (as referred in Section 3tB:latter does not take into account the discontinuity
along with the thickness, whereas the former considersagmimg that it is explicitly modeled. The adopted material
properties for units aré’, = 11,000 MPaj, = 0.25 and for mortar joint¥,, = 2,200 MPa;v,, = 0.20; and

the inelastic mechanical parameters for mortar joint fatexs are given byf; = 0.105 MPa,G} = 0.012 N/mm,

¢ = 0.20 MPa,G}’ = 0.05 N/mm,¢ = 30 degreesf. = 2.84 MPa;G';" = 4.00 N/mm. For all the cases, the
material nonlinearity is lumped in the mortar joints by gginterface FEs within the presented multi-surface plagtic
model. Note that the linear elastic relation between theegized stresses and strains of the interface FEs is given
by the classical constitutive equation of Hooke’s law,= De. Considering a line FE interface [for the adopted
plate theories Kirchhoff-Love (KP) and a Mindlin—Reiss(iP) models], the elastic stiffness matiX is given as

D = diag{k,, ks}. The values of the normakf) and sheark;) mortar joints stiffness terms can be easily computed
through Egs. (27) and (28), if considered that the masonmypaments are represented by a serial chain of springs,
under a stack-bond, with uniform stress distributions ithttbe unit and mortar joints. Therefore, the obtained \&lue
for k,, = 183 N/mm;k, = 72.6 N/mm, respectively.

E.Ep,

= B B )
GuGm

ks = GG (28)

wheret,, = 15 mm is the thickness of the mortar join(s;, andG,,, are the shear modulus of the unit and mortar,
respectively. Figure 5(b) shows the obtained results. ribied that the presence of the vertical discontinuity in the
masonry thickness has a marginal effect on the RVE vertieatlimg behavior/,,,. On the contrary, the model
with the discontinuity manifests a lower capacity for baolle thorizontal)M,,, and torsionalM,, moments with
differences ranging the 33% and 17%, respectively. Adal#ily, if the KP model results are considered, an error of
52% is expected for the horizontal bending moment case. Gasttis prove the importance of addressing the mortar
discontinuities and the three-dimensional shear effdoisgathe thickness of a masonry wall; especially in cases
where the thickness value is significant, as seen in Silva é€@18). Also, this highlights the care that needs to be
taken when adopting a modeling strategy for a given case/ .stin total processing time (CPU time requirements
using a laptop with an i7-4710MQ CPU) of the simulations was 846 s, and 249 s for the KP model, DNS model
without discontinuity and DNS model with discontinuityspectively.

4.2 Engineering Complex Problems: Meso/Macro Scales
4.2.1 LNEC Brick-House Mock-Up

The selected case study comes from the experimental woftepexd in LNEC by Candeias et al. (2017), which was
developed to foster a blind test prediction by differenttid authors on the dynamic behavior of a masonry structure.
The studied brick structure is composed of three walls ingh&ped plan arrangement. The main facade (East plan)
presents a gable wall and is linked with two transversalssalat act as abutments (North and South plans). These
were constructed with clay brickwork in an English-bondaagement of 235 mm of thickness (slenderness ratio
about 1:10). The geometrical features are seen in Fig. &) brick mock-up was tested until collapse in a shaking
table under a unidirectional seismic loading. The seismpeii was applied in a perpendicular direction (E-W) to
the main facade and derives from the N64E strong groundomatbmponent associated with the February 21, 2011
earthquake that occurred in Christchurch, New ZealanckrAffie filtering and cropping, the latter time signal served
as a reference for the seismic input generation and is cosdpafseight accelerograms. These have been obtained
from a scaling process, starting from one up to three. Thatisignal considered in the dynamic analysis is displayed
in Fig. 6(b).

Two (out of three) of the presented numerical approachesseé for this analysis as depicted in Fig. 6(c). In
particular, the macroscopic model and the simplified twalescnodel. Again, the former represents masonry as an
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FIG. 6: Case study: (a) the geometry of the case study; (b) the erpetal input seismic signal; (c) case study and the nunlerica
models considered for the dynamic analysis

isotropic material and has been defined here to follow a $ttain rotating crack constitutive material model, wherea
an exponential and parabolic law is adopted, respectif@lyhe tensile and compressive behaviors. An approximated
mesh size of 100 up to 150 mm was defined using 3D finite elemamdssuch fine discretization intends to by-pass
numerical problems faced during the performed computatiBar the latter, a direct numerical simulation (DNS 3D
mode with discontinuity) has been assumed at a meso-sadégite the homogenized quantities, wherein the vertical
mortar discontinuity is present in the thickness directidiha macro-scale, a mesh size of 200 mm is adopted.

The calibration of the elastic brickwork stiffnessés,(, E,,, andE,,) has been reached by accounting with
the modal identification data available. For the strengtiperties, as the tensile strength, cohesion, and compeessi
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strength, the values from Candeias et al. (2017) have bessh Tfie parameters that control the material curves
beyond the peak, namely the fracture energies, refer todjpiasonry literature values and no experimental referenc
is known.

Dynamic analysis has been performed by subjecting thetstreito the defined seismic input. Since the structure
has collapsed for the last accelerogram (acc 8), the coegais achieved for the accelerogram seven (acc 7) as
shown in Fig. 7. The results give good indications of theighdf the presented two-step approach in the dynamic
behavior prediction of the English-bond structure, as algggreement was found with the experimental time-history
displacements. Even if slight differences are visible Far peak displacements, the two-scale model also accurately
reproduces the residual displacement.

On the other hand, the macroscopic model seems to overéstthe structure capacity. The response is far
for being alike with the behavior reproduced by the latteygedure, despite sharing both the same material and
mechanical input. The nonconsideration of the existenticadrdiscontinuity seems to be of utmost importance.
In fact, the latter is paramount as it significantly decrsabe bending and torsional capacities. Furthermore, the
macroscopic approach makes use of a hysteretic behavibrseiant unloading-reloading branches, a feature that
leads to the underestimation of the energy absorption aindapable to record permanent plastic deformations.

Additionally, Fig. 8 reports the observed experimental andherical damage maps. From the two-scale and
macroscopic models, a vertical crack in the gable wall (dukdrizontal bending) is observed. In the former, the
onset of cracking is registered as well, due to torsional entents in the east plan opening towards the corners.
Both strategies captured moderate damage in the eastcwribr, even if this is not clear from the experimental
observations. Some in-plane damage around the north gielso registered. In general, a reasonable agreement
has been found for such a complex study. The total procesisivgg(CPU time requirements using a laptop with

an i7-4710MQ CPU) of the simulations was 76 min and 720 minttiertwo-scale (DNS 3D) model and the FE
macro-model, respectively.

‘ 1
Accelerogramy7 —— Two-scale model

FE macro-model

Experimental

Residual displacement of 0.60 mm
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FIG. 7: The obtained time-history displacements for the last a®alyaccelerogram (acc 7)
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FIG. 8: Observed damage: (a) after the experimental series of s@asterograms (from acc 1 to acc 7); (b) for the macroscopic
model at the instant= 160 s; (c) for the two-scale model at the instast 160 s

4.2.2 Sheffield University Parapet Wall

Experimental data available from the research reportedile®et al. (2002a) was used to assess the ability of the
presented numerical strategies in the prediction of thedhobehavior of masonry when subjected to a low-velocity
impact load. The numerical strategies presented in Se8tiane addressed [Fig. 9(a)-9(c)]. Note that a finer mesh
refinement has been assumed for all the strategies.

The selected parapets are designated as C6 and C7 and acatesplTheir assemblage was executed with
strong concrete blocks and weak mortar. The parapet wallack dimensions, as well as the boundary conditions
assumed, are reported in Fig. 9(a). Aiming to model a vellikéeimpact at both mid-height and length of the walls,

a triangular time-history load distribution, in which thegk value is equal to 110 kN, was applied. The deformation
of the studied parapets was recorded in a node located 580howe ¢he base and deviated 250 mm from the center.

The static material properties and the rate-dependenog is&s addressed for all the formulations; for the
macroscopic model in Rafsanjani et al. (2015a), for the smmzic model in Rafsanjani et al. (2015b), and for the
two-scale model in Silva et al. (2017a). To guarantee theistancy and representativeness of the comparison, the
models used the same analytical expressions fobtks. In particular, the laws made available by Hao and Tarasov
(2008), who studied the experimental dynamic behavior adrées of brick and mortar specimens under uniaxial
compressive tests through a tri-axial static-dynamic egtpa. As information regarding the strain-rate effects on
tensile and shear masonry properties was lackingPireregression equations for the tensile and shear material
parameters (as the tensile ultimate strengt,ortar, Mode-| fracture energ@}, cohesiorc and mode-II fracture
energyGfJ) were assigned to be equal to the compressive ones.

The obtained results are analyzed in terms of displacemeaghitude with respect to time. The comparison
is achieved through the experimental results (Gilbert e228l02) and complemented with a mesoscopic strain-rate
independent model by Burnett et al. (2007). Figure 10 shdwas the curve from Burnett et al. (2007) leads to
excessive displacements (and under stiff response). Tithi®apresented a simplified FE mesoscopic model (micro-
modeling approach) that represents mortar joints withriate elements. This strategy is strain-rate independent,
ergo their accuracy is highly dependent on the static nateroperties adopted. The use of static strength progertie
instead of dynamic ones may mislead the results (i.e., aanestimation of the collapse load may occur).

Conversely, the presented numerical models are reasoaetilyate in predicting the peak displacement, with a
relative error of around 10%. Regarding the post-peak dehdtis noticeable that the structure displacement testi
tion of the two-scale model is practically inexistent. Yamilarly to the experimental results, the latter is noireht
reproduced by the other three numerical models under casgpapresenting both an out-of-plane displacement that
slightly decreases in post-peak after the time instant 6fri&1. This is possibly due to the irreversible displacements
computed (permanent plastic strains) within the cyclicawédr of the CDP model. The response is still remarkable.
The total processing time (CPU time requirements using ®japith an i7-4710MQ CPU) of the simulations is
0.2 h (12 min) for the two-scale (DNS 3D) model, 2.5 h for therR&cro-model, and 23 h for the FE micro-model.
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FIG. 9: Sheffield University parapet wall: (a) geometry of the rumtnbond masonry parapets C6 and C7 tested by Gilbert et
al. (2002a); and the numerical models presented by the euthat are used in this analysis; (b) the strain-rate FE osaopic
model (macro-model approach); (c) the strain-rate FE noegs model (micro-modeling approach); (d) the straire-tato-scale
homogenized-based model
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FIG. 10: Time history of the out-of-plane displacement obtainedtf@r control node of the parapets C6 and C7 and deformed
shapes observed with the proposed model for the time irssaBims, 1.41 ms, 25 ms, and 300 ms
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4.3 Engineering super Large/Complex Problems: Macro-Scal e
4.3.1 Cathedral of the Blessed Sacrament

The Cathedral of the Blessed Sacrament is located in Chusth city (New Zealand). The building is based on
Roman style and was built using Oamaru limestone. The gemakfeatures are briefly addressed in Figs. 11(a) and
11(b). The building suffered a strengthening interveniioR004, in which the structural safety level was assumed to
be adequate. Yet a sequence of four main seismic events pegica of 9 months, between September 4, 2010 and
June 13, 2011, caused progressive damage and local calibgheetwo bell towers. Recognizing the symbolism and
type of loss associated with this Basilica, a numericalystuas conducted to evaluate potential retrofitting straegi
that could mitigate the extensive damage found and avoiddhi@pse of the bell towers. Two strengthening proposals
to be implemented in the Cathedral, considering the stheming intervention of 2004, were analyzed. The goal was
to guarantee the ultimate limit state (ULS), that is, to prewhe collapse of structural elements for the highest mean
horizontal PGA recorded in the 2010 and 2011 earthquakass,The value assigned as performance reference for
the structural assessment is given by 0.43 g and is defineldeblya@bruary 2011 seismic event [it corresponds to a
period of return around 400 years for new building desigr®ating to the New Zealand Government (2004)].

An FE numerical model was prepared using the presentedncamti FE-based anisotropic model (macro-
modeling) implemented in the software DIANA (2017). A testtain fixed crack model was adopted to represent
the physical nonlinear behavior. For such a large structinging at reducing the structural global number of degrees
of freedom of the Basilica’s numerical model, beam, sheall salid finite elements were used. The final FE mesh of
the Basilica’s model is presented in Fig. 11(c) and corredpao a total number of 178,719 degrees of freedom. The
material and mechanical properties were based on infoomatiovided by the NZ authorities and from literature, see
Silva et al. (2018) for more details.

The seismic performance of the Cathedral was evaluateddhra pushover analysis. This is a time-invariant
analysis (static) and is more convenient than a nonlineaaahyc analysis with time integration as it is computational
more attractive. A uniform pattern was adopted for the a&gphorizontal loads, meaning that the distribution of
applied forces is proportional to the mass distributiorhef $tructure.

For the first strengthening proposal, a set of 12-meters $baigless-steel tie rods was applied to the structure
at the level of the floors being anchored in the slabs. The a#® tlve improvement of the connection between
orthogonal walls, allowing a better force distributionarthe nave walls and preventing the out-of-plane collapse of
the bell towers. The second strengthening proposal kepthtlee tie rods of the first proposal at the main facade
but includes ring beams at the bell towers instead of thelsts-steel tie rods. Such addition aimed to improve
the connection between structural elements, namely tHedvetrs and nave walls. Furthermore, it allowed better
confinement for the bell towers in order to facilitate a hefiece distribution and prevent out-of-plane collapse.

The efficiency of the strengthening proposals was evaluzdedd on the pushover analyses for the longitudinal
direction — X only [the out-of-plane mechanism of the belléws and main facade were found Silva et al. (2018) to
have the lowest load capacity]. The capacity curves depict€ig. 12 shows a clear improvement in the load and

e
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FIG. 11: Geometry of the Blessed Sacramento Basilica: (a) westt@eydb) plan; (c) the assumed FE numerical model
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FIG. 12: Obtained capacity curves with and without the strengthgpihoposals

inelastic displacement capacity of the structure, for Wit least a maximum horizontal load of about 0.57 g was
obtained (strengthening proposal 2). The first strengttgepioposal allows at least a maximum horizontal load equal
to 0.49 g. Itis noted that the maximum horizontal load agpi@the nonstrengthened model is equal to 0.35 g.

The damage assessment was evaluated based on the maximaipgbtensile strain, which is a good qualitative
indicator of cracking. The structural strengthening utelan in 2004 played a decisive role in the avoidance of
further damage, but this strengthening was insufficientéwgnt local failure mechanisms. The crack pattern of the
nonstrengthened model shows that the Basilica sufferezts@lamage in both bell towers and in the vicinity walls
for a horizontal load of 0.35 g [Fig. 13(a)]. Extensive criackdue to in-plane shear failure is observed. Figures 13(b)
and 13(c) show that the results are in accordance with teadetd one, as insignificant damage was observed at the
bell tower walls. Hence, the strengthening measures bligerithe loads to the nave walls and nave slabs, causing
more damage to these elements, namely some cracks on tHifirgf the nave.

Finally, the seismic performance of the structure accogniiith the strengthening proposals was also evaluated
for a horizontal load equal to 0.43 g (PGA of the February 2€d@hquake). Figure 14 presents the principal tensile
strains, from which it can be observed that the model witHitlsestrengthening scheme suffered more damage than
the one with the second strengthening scheme. Thus, thestfiestgthening proposal is an effective solution as it
creates new load paths and delays failure. However, it doggrovide enough strengthening for the two-bell towers
in order to change its condition as the most vulnerable etsnaf the structure. The second strengthening proposal,

| 598E-1
549E-1
5E-1

| 451E-1

| 4021
353E-1
304E-1

I 255E-1
\206E-1
ABTE-1
108E-1
59E-2

(b) (c)
FIG. 13: Comparison of principal tensile strains for the horizoilwald equal to 0.35 g: (a) nonstrengthened model; (b) sthengt
ened model 1; (c) strengthened model 2
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FIG. 14: Comparison of principal tensile strains for the horizotdabl equal to 0.43 g: (a) strengthened model 1; (b) strengthe
model 2

which includes stainless steel rings, presents the beshgeperformance guaranteeing a safety level for the bell
towers of at least 40% of the full code requirements (Silval.e2018).

The structural strengthening undertaken in 2004 playecciigte role in the avoidance of further damage, but
it was insufficient to prevent local failure mechanisms. fhenerical results indicate that the structure is unsafe for
an earthquake such as the one experienced in February 20&hich the collapse of the bell towers and significant
damage would be expected. The model allowed the identiicati two possible strengthening solutions that could
change the outcome of similar seismic events to be addre$bedtotal processing time (CPU time requirements
using a laptop with an i7-4710MQ CPU) of the simulations usnd 14 h for the nonstrengthened numerical model
accounting with the full structure.

4.3.2 Al-Askari Holy Shrine: Blast Load

The Islamic cultural heritage site of Al-Askari Holy Shriisesituated in Samarra, Iraq; its geometry is shown in Fig.
15(a). The Al-Askari shrine suffered a terrorist attack gbRuary 2006. A large quantity of explosive charge (200
kg TNT) had been placed at the top of the dome by taking adgenté the existing scaffold due to the ongoing
conservation works (Pandey et al., 2006). The blast loattale=si the dome and the resulting debris damaged the
buildings’ roof. The majority of the dome’s structure cglited inside the mosque (Baylot and Bevins, 2007). Also,
significant damage has been reported in both the East andaiastes [Fig. 15(b)].

The continuous anisotropic FE macro-model with straie-t&tpendency, presented in Section 3.2, has been used
in this study. The main goal is the demonstration of the c#ipathat the proposed advanced numerical tool (meaning
the plasticity model) offers in the analysis of full masomstyuctures under blast load. In this regard, a numerical
model featuring the structure of the mosque was develop&BAQUS (2013). The supports were defined as fixed

©

(b) (c)
FIG. 15: Islamic cultural heritage site of Al-Askari Holy Shrine:)(geometry; (b) local where the blast detonation took place
(i.e., placed at the top of the dome); (c) FE mesh adopted@ocontinuum macroscopic model
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and only solid FEs were used (i.e., 8-noded linear brickduged integration, hourglass control) and 4-node linear
tetrahedron). The final model has a total of 112,623 degrefesariom and the FE mesh is represented in Fig. 15(c).

The material anisotropy has been considered following aalediterature information, see Rafsanjani (2015). To
account with the strain-rate dependency of the masonry ositggyield surface, the required DIF laws from the study
by Pereira and Lourenco (2016a) have been used. In ordexejp the problem with a pure Lagrange formulation,
the blast load has been applied as pressure load profileedppldifferent zones of the building to assure the
representativeness of its distribution. A total of eighteswith different stand-off distances have been modeled. T
results of the dynamic analysis are shown next in terms aiocorplots for two instant times

For a time instant equal to= 25 ms, immediately after the occurrence of the explosioat @lacurs for & = 20
ms), the maximum principal plastic strain is given in Fig(d)6 Significant values are localized in the dome, whereas
the incremental deformed shape of Fig. 16(b) shows dispianés in the order of 17 cm. The level of loading seems
high enough for this structure, hence severe nonlineasityife masonry behavior and consequently, intense crack
formation is reported. Note that the plasticity model does hmave incorporated a damage model, yet the plastic
strains could be a good qualitative indicator of damage.
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FIG. 16: Results obtained for the Islamic cultural heritage site t6fA8kari after the numerical analysis of a blast load: (a)
maximum principal plastic strain after the blast load«25 ms); (b) incremental deformed shape (SI unit, m) aftebthst load
(t = 25 ms); (c) maximum principal plastic strain after the maghiicant over-pressure profiles & 70 ms); (d) incremental
deformed shape (Sl unit, m) after the most significant ovesgure profilest(= 70 ms)
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The onset of significant damage is visible in the top of the ebnit instantly includes its bottom part around the
openings. Due to the inertial forces, the dome continuesdeenduring the unloading phase and other parts of the
structure, as the roof, minarets, and side facades, aretedfeThis is addressed in Fig. 16(c), where the maximum
principal strain obtained is plotted fer= 70 ms (i.e., after the occurrence of the blast and the mosffisignt
over-pressures profiles). It is clear now that the damagemas spread in the latter elements, as supported by the
incremental deformed shape of Fig. 16(d).

The qualitative evaluation of the damage is presented iild®t Rafsanjani (2015). It has been concluded that
the damage pattern found certainly leads to the collapseeafdme and to extensive degradation of both the East and
West facades. The addressed conclusions go hand-in-Hemthesreported real behavior, ergo proving the adequacy
of the advanced strain-rate FE macroscopic model. One niay mowvever, that the application of the blast load can
be a cumbersome task, as demonstrated by other studieo{RBad Bevins, 2007). The total processing time (CPU
time requirements using a laptop with an i7-4710MQ CPU) efdimulation is 101 hours.

5. FINAL REMARKS

FE-based numerical strategies currently have a primagyirothe mechanical behavior analysis of masonry struc-
tures. Its usefulness is barely questioned, as these atela#y by both the academic and professional communities
to solve problems within manageable timelines that otheewvould defy treatment (Linz, 1988). Since computa-
tional modeling relies on the physical insight of matetiflsther developments are continuously needed aiming to
decrease the related epistemic and modeling uncertainties

In such a context, the present article addressed the impartaf computational strategies for the numerical
analysis of masonry structures. Three advanced FE-basdélsnbave been proposed and include an FE micro-
model, an FE macro-model, and a novel simplified Ritlti-scale model. These models can reproduce the masonry
orthotropy, full softening behavior, and loading straaterdependency.

The proposed strategies have been used for the engineésntad to large, super-large and complex problems
with a focus on the well-known out-of-plane vulnerability unreinforced masonry structures. The evaluated case
studies are the following ones: (i) meso-scale static atarization of the out-of-plane behavior for an Englismto
masonry wall; (ii) seismic analysis of the LNEC brick housetptype and the Cathedral of the Blessed Sacrament;
(i) impact load analysis of the Sheffield University pagamall; and (iv) the blast load analysis of the Al-Askary
Holy Shrine.

The small-scale problem included the characterizatioh@fut-of-plane homogenized behavior of an English-
bond masonry bond at a meso-scale. The results proved haniththickness vertical joint of an English-bond
masonry wall leads to the reduction of its out-of-plane cétgaReduction of 33% and 17% were found for the hor-
izontal bending and torsional moment peak values, respgtbetween a three-dimensional numerical model with
and without the discontinuity. This effect has been alsm@sgsed for the large-scale study of the LNEC brick house
mock-up. Here, a good agreement between the experimentahuyg response and the one predicted by the simpli-
fied multi-scale strategy was found. The FE macro-modeliregegyy is, however, unable to capture the lessening of
the masonry bending strength and hence to properly prédicttucture’s behavior when subjected to a seismic load;
expected as it assumes an isotropic behavior for the honeogsrequivalent material.

Concerning the complex problem of the Sheffield Universiayapet wall subjected to an impact load, a good
resemble was achieved for all the proposed strategies. Anmuax relative error of 10% was found for the out-
of-plane displacement of the control node. This error isydw@r, only achievable since the three proposed models
account with the strain-rate dependency of the masonry hamyc increase factors (DIFs). It has been shown that
static material and mechanical properties do not offer adtginsight into the masonry response for fast dynamic
problems.

For the super-large and complex problems, as the Cathddssed Sacrament and the Al-Askari Holy Shrine
case studies, the use of an FE macro-model seemed to be theanesnient one as it allows a most straightforward
modeling stage. Regarding the former, the numerical mdtbeted the prediction of the proneness to collapse of the
two bell towers of the Cathedral when subjected to the Ghiristh seismic events of 2010 and 2011; but, as well, to
compare the efficiency of two-retrofitted interventionsgBeling the latter, the FE macro-model allowed to predict
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well the collapse of the main dome and capture the severeglafand in both the East and West facades of the
Mosque when subjected to a blast load. Although an FE maaaeiing approach is very practical, some attention is
recommended when a more detailed description of the respdamage onset, and propagation is desired for a given
structural element, as concluded by the obtained smearedgtain the latter problems. In such cases, down-scaling
through a micro-modeling or a multi-scale approach could beoper alternative.

From the conducted analyses, it is noteworthy to addressitbanodeling strategies adopted for the mechanical
study of periodic masonry are mainly dependent on the dimnea®f the structure under investigation. For meso-
scale problems (order of centimeter), a purely micro-miadehpproach seems preferable. Yet, for large or super-
large problems (order of meters), as the study of the dynaetavior of a structural wall or building, the use of a
macro-modeling or simplified multi-scale approach is gatefollowed. In such cases, the potential of a simplified
multi-scale model and the inadequacy of an FE micro-modesgecially clear for the Sheffield University parapet
wall case study. From a computational standpoint, the foim&l5 times faster than the FE-micro model and 12.5
times faster than a continuous FE macro-model.

Through a logical extension, a simplified multi-scale aggtocan significantly decrease the CPU times obtained
when using an FE macro-model in the study of super large amghlex problems. For instance, the CPU time of 14
hours and 101 hours obtained using an FE macro model for tte@al of the Blessed Sacrament and the Al-Askari
Holy Shrine Mosque case studies, respectively. It is ingurto address that the modeling step of such structures
using the proposed multi-scale model, through a discragedbstrategy, can be also cumbersome. Hence, the decision
of the best strategy should account with the trade-off betvtbe required time for the numerical model preparation
and the numerical analysis.

Lastly, the authors stress that the presented FE compudhtitrategies have been implemented in powerful
advanced FE software, such as DIANA (2017) and ABAQUS (201B¢ latter software is already able to handle
parallel computing and thus decrease the required runnimgepsing times of the analysis (more evident in large-
scale/complex problems). This is an important featuret has been seen that the engineering solutions are largely
conditioned by the required computational cost associaifdthe modeling approach followed. Perhaps in a near
future, when more powerful computers are of common use (astgm computers), the engineering of a given
problem through a full continuous micro-modeling appro&rcim the meso- to a structural-scale will be, even if
contentious from the number of input parameters that degrfaadible from a CPU time standpoint.
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