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Masonry structures constitute a large portion of the built heritage around the world, from the past until today. There-

fore, understanding their structural behavior is crucial for preserving the historical characteristics of many buildings

and in addressing the requirements for housing and sustainable development. Due to its composite and highly nonlin-

ear nature, the analysis of masonry structures has been a challenge for engineers.

This article presents a set of advanced models for the mechanical study of masonry, including the usual micro-modeling

approaches (the masonry constituents, unit and joint, are represented separately), macro-modeling (masonry con-

stituents are smeared in a homogeneous composite), and multi-scale techniques (upscaling from micro to macro is

adopted). An extensive overview of its computational features is provided. The engineering application of such strate-

gies is presented and covers problems from the masonry components level (meso-scale) to the structural element itself,

and ultimately to the level of monumental buildings (super-large). The structural safety assessment and/or strength-

ening schemes evaluation are performed amid the static, slow dynamics or earthquakes, and fast dynamics or impact

and blast ranges.

KEY WORDS: masonry, micro-modeling, macro-modeling, multi-scale, homogenization, URM applica-
tions, seismic load, fast dynamics, out-of-plane

1. INTRODUCTION

Masonry is an ancient but still widely used material. Its usage has been mainly fostered by the simplicity of this type
of construction, where masonry units are laid together withor without the use of bonding mortar. Features such as its
durability, aesthetics, low maintenance, adaptability, good sound, and thermal insulation properties (Hendry, 2001)
are also important for allowing continuous applications for masonry. Unreinforced masonry (URM) buildings are a
relevant part of the worldwide building stock. These include stone, brick, adobe, or earthen masonry structures and
represent, in countries such as Mexico, Pakistan, and Peru,more than 75% over its total buildings’ inventory. In other
countries (Iran, Australia, Indonesia, or Italy), the relative percentage is higher than 50% (Frankie et al., 2013). A
similar trend is found in Portugal, with a value of about 50%,according to the Portuguese Census of Population and
Housing.

Most of this widespread built heritage has been achieved based on empirical knowledge passed by generation to
generation and, therefore, the structural behavior of URM was often ill-understood. These constructions have been
typically made to withstand vertical loads, and its low strength/mass ratio makes the buildings rather vulnerable to
dynamic horizontal loads as earthquakes, impact, or blast actions. This addresses the importance of carrying out
urgent measures in the URM built stock to avoid human and societal consequences and to minimize future economic
impacts. Yet, intervening in these constructions is a complex process, due to the lack of structural information and
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due to their high importance. A scientifically-based process is less susceptible to inadequate actions, which clearly
sets a convenient context for the continuous development ofnumerical strategies.

Advanced computational strategies have been developed in the last few decades. Conversely to concrete and steel
structures, the design guidelines for masonry did not go always hand in hand with the application of innovative meth-
ods. Still, it is currently well accepted that sophisticated strategies, mainly based on the finite element (FE) method,
constitute important tools that deserve more attention from the scientific community. Three main modeling strategies
for the mechanical study of masonry are: (i) direct numerical simulation or micro-modeling approaches [masonry
constituents, (unit and joint) are represented separately]; (ii) macro-modeling (masonry constituents are smeared in a
homogeneous composite); and (iii) the multi-scale techniques (upscaling from the meso-scale to the macro-scale is
adopted). The mechanical complexity of masonry may demand,in some cases, more detailed analysis with a focus on
the component levels. Although accurate, a direct numerical simulation (micro-modeling) is expensive to carry out
from a computational standpoint and, therefore, macro- or multi-scale techniques can be more appropriate for large
or super-large problems. An engineering compromise between the solution accuracy and the time-cost demand needs
to be assumed which, depending on the nature of the problem, may constitute a real challenge.

2. GENERAL SCOPE

Prevailing design rules or analytical approaches still are, within engineering practice, the most useful in the structural
analysis of URM buildings. These pose, however, several well-identified limitations that may lead to potential unreal-
istic or conservative results (Theodossopoulos and Sinha,2013). Other simplified procedures, as the story-mechanism
(Tomaževič, 1999) and the equivalent frame-based models(Lagomarsino et al., 2013; Quagliarini and Maracchini,
2017) can also be found in the literature. Such models, however, hardly consider the out-of-plane failure modes and
thus these are generally disregarded in most study cases. More suitable and yet conceptually simple procedures, as
the rigid-body approaches (Konstantinidis and Makris, 2007; D’Ayala and Shi, 2011) or the well disseminated kine-
matic methods (D’Ayala and Speranza, 2003; Griffith and Magenes, 2003; Calvi et al., 2006), are useful to provide
closed-form solutions under dynamic excitations but are very complex for walls subjected to two-way bending.

Sophisticated FE computational strategies deserve more attention from the scientific community. Several ad-
vances have been achieved in the last few decades and these constitute important (sometimes indispensable) analysis
tools. For the masonry field, it is recognizable that two scale levels are of interest when analyzing structural behavior
(Lourenço, 2009; Roca et al., 2010), the macro- and the meso-scales (Fig. 1). Again, three main modeling strategies
can be put together, namely (i) the direct simulation or the micro-modeling; (ii) macro-modeling; and (iii) multi-scale
modeling.

In the micro-modeling approach, both masonry components (units and mortar joints) are explicitly represented.
These are certainly capable of well reproducing both in- andout-of-plane orthotropic nonlinear behavior of masonry

FIG. 1: Representation of the three scales considered in the analysis of masonry for this study: macro-scale and meso-scale.
Definition of the modeling strategies adopted to represent masonry.
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but are characterized by long processing times, being only recommended for limited size structural problems (Lotfi
and Shing, 1994; Giambanco and Rizzo, 2001; Lemos, 2007; Sejnoha et al., 2008; Adam et al., 2010; Macorini and
Izzuddin, 2011, 2013; Sarhosis et al., 2014). The macro-modeling strategies smear out the heterogeneous assemblage
of mortar and bricks into a fictitious homogeneous anisotropic material. The use of closed-form laws to represent the
complex phenomenological behavior and damage of the masonry may be cumbersome, as it may require a calibration
step (usually achieved by thorough experimental campaigns). However, this approach allows studying large-scale
structures without the drawbacks exhibited by meso-modeling (Dhanasekar et al., 1985; Lourenço et al., 1997; Berto
et al., 2002; Roca et al., 2013).

Multi-scale FE (or FE2) methods are in-between the latter two FE modeling schemes.The framework is being
used to investigate the response of composites with different natures (Spahn et al., 2014; Trovalusci et al., 2015; Greco
et al., 2017; Leonetti et al., 2018). It typically relies on ameso- and macro-transition of information and is, therefore,
designated as two-scale or FE2 approaches. Full continuum-based FE2 approaches result in a good compromise
between solution accuracy and computational cost. Nevertheless, these methods still constitute a challenge if one
desires to account for the material nonlinearity (Geers et al., 2010; Otero et al., 2015). In fact, the constant need
of data between the macro- and meso- scales constitute a contentious issue, because a new boundary value problem
(BVP) must be solved numerically for each load step and in each Gauss integration point. The utility of the approach is
compromised due to the involved computational time, and thus full continuum-based FE2 approaches are seldom used
for dynamic purposes or for complex structural analysis. Anadequate possibility is the use of a two-scale simplified
strategy, for instance, by using a kinematic theorem of limit analysis at a macro-level to obtain the homogenized
failure surfaces with a very limited computational effort (de Buhan and de Felice, 1997; Milani et al., 2006; Cecchi
and Milani, 2008). Yet, the use of discrete FE-based methodsat a macro-level seems to be a promising alternative
(Silva et al., 2017b; Casolo and Milani, 2010; Milani and Tralli, 2011).

In this context, three advanced FE-based models, for which the authors gave their contribution, are hereafter
addressed and each one belongs to one of the aforementioned modeling strategies (Fig. 1): a simplified micro-model;
a macro-model; and a simplified two-scale (FE2) model. Note that the strategies can handle the masonry fullsoftening
behavior, anisotropy, and its strain-rate dependency under fast dynamic cases. Furthermore, all the strategies have
been implemented in advanced FE softwares.

3. PROPOSED MODELING STRATEGIES

3.1 FE Mesoscopic Model

An FE mesoscopic model first introduced by Lourenço (1996) within the so-called simplified micro-modeling ap-
proach is presented next. The interface model for masonry has the ability to reproduce the loading strain-rate effects
on the material properties (Rafsanjani et al., 2015b). A multi-surface plasticity model, the so-called composite in-
terface model, is typically considered for the mortar joints and is suitable to reproduce fracture, frictional slip, and
crushing along the interface elements.

The assumption that all the inelastic phenomena occur in theinterface elements leads to a robust type of modeling,
which can follow the complete load path of a structure until the total degradation of stiffness. For a 3D configuration,
the linear elastic relation between the generalized stresses and strains of the interface FE is given byσ = Dε, whereas
the stiffness matrix isD = diag{kn, ks, kt} (the subscriptn refers to the normal and the subscriptss andt to the
shear components).

The constitutive interface model is defined by a convex composite yield criterion with three individual functions,
specifically: (i) a tension cut-off criterion designated asfcriterion,1 and defined in Eq. (1); (ii) a Mohr–Coulomb shear
criterion designated asfcriterion,2 and defined in Eq. (2); and (iii) a cap in compression designated asfcriterion,3 and
defined in Eq. (3). Softening behavior is represented in all the modes. The tensile criterion [Fig. 2(a)] reads:

fcriterion,1(σ, κ1) = σ− σ̄1(κ1) and σ̄1 = ft exp

(

−
ft
GI

f

κ1

)

(1)
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(a) (b) (c)

FIG. 2: Multi-surface plasticity model adopted for the mortar joints (interface FEs). The behavior of quasi-brittle materials under
(a) tensile loading (mode-I,ft is the tensile strength); (b) shear loading (mode-II,c is the cohesion) accounting with a potential pre-
compression level; (c) compressive load (fc is the compressive strength;p andm are the peak and medium values, respectively).

The shear criterion [Fig. 2(b)] is given as:

fcriterion,2(σ, κ2) = |τ|+ σ tanφ(κ2)− σ̄2(κ2) and σ̄2 = c exp

(

−
c

GII
f

κ2

)

(2)

For the compressive yield function [Fig. 2(c)] and using a matrix form:

fcriterion,3(σ, κ2) = 1/2
(

σTPσ
)

+ pTσ− σ̄2
3(κ3) (3)

Here,σ is the generalized stresses,ft is the interface bond strength,c is the interface cohesion strength,φ is the
friction angle;P is a projection diagonal matrix andp a projection vector based on material parameters;GI

f , GII
f are

the mode-I and mode-II fracture energy terms, respectively; σ̄1, σ̄2, andσ̄3 are the effective stresses of each adopted
yield functions governed by the internal scalar variablesκ1, κ2, andκ3, respectively. Note that the typical compressive
hardening/softening law̄σ3(κ3) is composed of three branches, as observed in Fig. 2(c), which are in agreement with
theσ̄c1(κ3), σ̄c2(κ3), andσ̄c3(κ3) laws defined by Lourenço and Rots (1997), and presented in Eq. (4). Note that the
subscriptsi, m, andr for both the yield stress value and scalarκ indicates the initial, medium, and residual values,
respectively. The compressive fracture energyGIV

f depicted in Fig. 2(c) corresponds to a material input parameter of
the model and allows computing the residual strength valueσ̄r (from the peak̄σp one).

σ̄c1(κ3) = σ̄i + (σ̄p − σ̄i)

√

2κ3

κp
−

κ2
3

κ2
p

(4a)

σ̄c2(κ3) = σ̄p + (σ̄m − σ̄p)

(

κ3 − κp

κm − κp

)2

(4b)

σ̄c3(κ3) = σ̄r + (σ̄m − σ̄p) exp

(

m
κ3 − κm

σ̄m − σ̄r

)2

, m = 2
σ̄m − σ̄p

κm − κp
(4c)

It may be highlighted that a penalty approach is not followedby the adopted interface FEs to phenomenologically
represent the behavior of masonry crushing. Here, penetration and overlapping between neighboring brick units can
occur which does not blur the adequacy of the strategy. The dynamic interface model has been implemented in

International Journal for Multiscale Computational Engineering



Computational Applications in Masonry Structures 5

the software DIANA (2017) (strain-rate independent) and inABAQUS (2013) (strain-rate dependent). In the latter,
a FORTRAN user-subroutine was developed, and the material model is introduced by a failure criterion. A Euler
backward algorithm (linear predictor-plastic corrector approach) is adopted for the stress update process. The user-
subroutine VUINTER provided in ABAQUS is involved to define contact interface behavior. The interface material is
assumed to be bonded to each of two contacting surfaces (slave and master surfaces) and, again, the material strength
values are sensitive to the load strain-rate level [see Lourenço and Rots (1997) and Rafsanjani et al. (2015b), for
further details].

3.2 FE Macroscopic Model

Several continuum models have been presented in the literature, albeit especially indicated for concrete-like materials,
such as the well-known ‘Barcelona’ model by Lubliner et al. (1989), the ‘Microplane’ model (Bažant et al., 1996), the
Concrete Damage Plasticity (CDP) model (Lee and Fenves, 1998), and the Pontiroli, Rouquard, and Mazars (PRM)
model presented in Pontiroli et al. (2010). Here, a plasticity continuum model is presented for the static and dynamic
study of masonry. The model stems from the anisotropic continuum model for masonry shells and plates proposed by
Lourenço (1997, 2000), in which the so-called composite yield criterion is defined. The formulation is briefly recalled
here for a 3D stress space, whereas the stress and strain tensors are typically represented as six-components vectors
owing the symmetry conditions, and given as follows:

σ = {σx,σy,σz , τxy, τyz, τxz}
T

ε = {εx, εy, εz,γxy,γyz,γxz}
T

The anisotropy of the material behavior is considered sincedifferent hardening/softening regimes can be introduced
for different axes. The so-called composite yield surface (Lourenço, 1997) is adopted and, therefore, a total of three
Rankine-type yield criterion are defined in tension and a Hill-type criterion in compression.

3.2.1 Tension: A Rankine-Type Criterion

An adequate formulation of the Rankine criterion reads as a single function governed by the first principal stress and
one yield valuēσt that rules the hardening/softening of the material:

f1 =
σx + σy

2
+

√

(

σx − σy

2

)2

+ τ2
xy − σ̄t(κt) (5)

whereκt is the scalar that governs the amount of hardening/softening. Considering the three symmetric planesxy,
yz, andxz, designated asi = 1, 2, and 3, respectively, one can write Eq. (5) in a matrix form:

fi =
(

1/2ξT
i Pt,iξi

)1/2
+ 1/2πT

i ξi (6)

Here,ξi is the reduced stress vector given byξi = σ − ηi. The stress vectorσ represents the six-components

of the stress field and reads asσ = {σx,σy,σz , τxy, τyz, τxz}
T ; the back stress vectorηi is given asη1 =

{σ̄tx(κt,1), σ̄ty(κt,1), 0, 0, 0, 0}T for thexy-plane, asη2 = {0, σ̄ty(κt,2), σ̄tz(κt,2), 0, 0, 0}T for theyz-plane, and

η3 = {σ̄tx(κt,3), 0, σ̄tz(κt,3), 0, 0, 0}T for thexz-plane. Likewise, the projection vector readsπ1 = {1, 1, 0, 0, 0, 0}T ,

π2 = {0, 1, 1, 0, 0, 0}T , andπ3 = {1, 0, 1, 0, 0, 0}T . The projection matrixPt,i is defined for each of the indexes 1,

2, 3 as:
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Pt,1 =





















1/2 −1/2 0 0 0 0

0 1/2 0 0 0 0

0 0 0 0

2α1 0 0

sym 0 0

0





















Pt,2 =





















0 0 0 0 0 0

0 1/2 −1/2 0 0 0

1/2 0 0 0

0 0 0

sym 2α2 0

0





















Pt,3 =





















1/2 0 −1/2 0 0 0

0 0 0 0 0

1/2 0 0 0

0 0 0

sym 0 0

2α3





















(7)

It is important to recall that the yield stress valuesσ̄tx(κt,i), σ̄ty(κt,i), σ̄tz(κt,i) are described by exponential softening
rules:

σ̄tx(κt,i) = ftx exp

(

−
hftx
Gftx

κt,i

)

σ̄ty(κt,i) = fty exp

(

−
hfty
Gfty

κt,i

)

σ̄tz(κt,i) = ftz exp

(

−
hftz
Gftz

κt,i

)

(8)

whereftx, fty, ftz are the material uniaxial tensile strength values andGftx, Gfty, Gftz the material tensile fracture
energies according to the material axes; andh is the equivalent length related to the finite element size (Bažant and
Oh, 1983), aiming the fracture energy regularization. A nonassociated plastic potentialgi has been considered and
reads as:

gi =
(

1/2ξT
i Pg,iξi

)1/2
+ 1/2πT

i ξi (9)

wherePg,i is the projection matrix that represents the Rankine plastic flow, given by Eq. (7) for anα1, α2, α3 = 1.
The inelastic behavior is ruled by a strain-softening hypothesis, in which the scalar in rate forṁκt,i is written in terms
of the plastic multiplier ratėλt,i, i.e.,κ̇t,i = λ̇t,i.

3.3 Compression: A Hill-Type Criterion

A Hill-type criterion is used to characterize the yield condition of masonry in compression assuming a rotated cen-
tered ellipsoid shape. The formulation is considered in the3D stress space for convenience and includes different
compressive strength values along the different material axes. In a matrix form, the yield criterion can be written as:

f4 =
(

1/2σTPcσ
)1/3

− σ̄c(κc) (10)

whereσ̄c is the yield value along the three material axes given byσ̄c(κc) =
3
√

σ̄cx(κc)σ̄cy(κc)σ̄cz(κc). The projec-
tion matrixPc is computed through Eq. (11):
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Pc =





























2
σ̄cyσ̄cz

σ̄2
cx

β1 β2 0 0 0

2
σ̄czσ̄cz

σ̄2
cy

0 0 0 0

2
σ̄cxσ̄cy

σ̄2
cz

0 0 0

2γ1 0 0

sym 2γ2 0

2γ3





























(11)

The parametersβ1, β2 andγ1, γ2, γ3 influence the shape of the yield criterion. The parametersβi controls the cou-
pling between the normal stress values and should be obtained experimentally (Lourenço, 1997), and the parameters
γi are obtained asγ1 = (fcxfcy)/τ

2
u,c, γ2 = (fcyfcz)/τ

2
u,c, andγ3 = (fcxfcz)/τ

2
u,c. Here,fcx, fcy, fcz are the

uniaxial compressive strengths in thex-, y-, andz-directions, respectively andτu,c the fictitious material pure shear
strength in compression. The inelastic law of the material in the compressive regime comprehend a parabolic harden-
ing followed by a parabolic/exponential softening, whereas different fracture energy values may be defined according
to the material axes, i.e.,Gfcx, Gfcy, andGfcz.

The anisotropic macro-model has been implemented in the advanced software DIANA (2017) (strain-rate inde-
pendent) and in ABAQUS (2013). In the latter, a FORTRAN user-subroutine VUMAT was developed, in which the
material model and the procedure to update the stress vectorand state variables has been provided.

3.4 A Simplified Multi-Scale (FE 2) Homogenization-Based Model

A simplified two-step numerical procedure has been recentlyintroduced by the authors (Silva et al., 2017a,b). The aim
has been the prediction of the static and dynamic mechanicalresponse of periodic masonry structures, whereas both
the masonry orthotropy and material nonlinear behavior canbe represented under an attractive computational burden.
The strategy makes use of a classical first-order homogenization scheme and is formed by three steps: (i) definition
and solution of the meso-scale problem; (ii) implementation of the meso-to-macro transition; and (iii) solution of the
macro-scale problem.

3.4.1 Meso-Scale (FE-Based Mesoscopic Model)

A unit-cell homogenization approach is employed at a meso-scale. The strategy can be designated as an upward pro-
cedure (i.e., information regarding the mechanical characterization at a cell level is transferred into the macro-scale).
Different numerical models can be employed at a meso-scale and, therefore, the accuracy of the strategy is highly
dependent on the accuracy of the latter. It relies on a micro-modeling approach and involves solving a mechanical
problem on a representative volume element (RVE) to derive average field variables. The authors have employed a
Kirchhoff–Love (KP) and a Mindlin–Reissner (MP) plate FE models but it is possible to use a three-dimensional
model (3D DNS); see Silva et al. (2018) for further details. The units are elastic and the material nonlinearity is
assumed to be lumped in the joints aiming at the decrease of the computational effort. This assumption seems to
be specially adequate for strong block masonry structures (Sinha, 1978; Herbert et al., 2014). Units are modeled as
quadrilateral FEs and mortar joints through zero-thickness interface FEs. The multi-surface plasticity model presented
in Section 3.1 has been considered for the interface elements.

The RVE needs to be statistically representative of the macro-scale level (Hill, 1965) and sufficiently small to
respect the principle of scales separation of first-order homogenization theory. Since a bespoken model for periodic
masonries has been proposed (Silva et al., 2018), the recommendations by Anthoine (1995) are followed for the
definition of the RVE within a running-bond and English-bondmasonries. Accordingly, a rectangular pattern with
more than one brick unit and within a rectangular basic cell is defined to represent the RVE of study, as seen in the
next section. The RVE is herein denoted asΩm. The kinematical description of the homogenization-basedmodels for
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the in-plane case relies on the assumption that the macroscopic strain tensorE is obtained as the volume average of
the mesoscopic strain fieldεm = εm(y) at each point over the associated RVE:

E =
1
Vm

∫

Ωm

εm dV (12)

whereVm is the volume of the RVE. The mesoscopic strain field can be decomposed into a macro-scale and meso-
scale contribution. The latter is referred to as an additivedecomposition of the mesoscopic strain tensorδεm =
δεm(y), and given asδεm = δE + ∇sum, whereδE is the applied constant strain tensor over the RVE and
∇sum is the gradient of the fluctuation displacement field. Considering thatσm is the mesoscopic stress field, upon
RVE equilibrium, the homogenized generalized stresses canbe derived. The Hill–Mandell principle is based on an
energetic equivalence between the macroscopic and mesoscopic work, as follows:

Σ : δE =
1
Vm

∫

Ωm

σm : δεm dΩ (13)

in which Σ is the macroscopic stress tensor. According to the assumed additive decomposition of the mesoscopic
strain tensor, one may obtain the macro-homogeneity principle as:

Σ : δE =
1
Vm

∫

Ωm

σm : δE dΩ +
1
Vm

∫

Ωm

σm : ∇sδum dΩ (14)

for any kinematical admissibleδum. Periodic boundary conditions are assumed to solve the boundary value problem.
Such consideration is extensively found in homogenizationprocedures (Blanco et al., 2016) also for the particular
case of masonry structures (Cecchi and Sab, 2002b; Milan et al., 2006a; Otero et al., 2015). The periodic boundary
conditions lead to a kinematical field that enforces anti-periodicity of the tractions to occur. Due to the periodicity of
the displacement fluctuations on the boundaries, Eq. (14) can be simplified and expressed as:

Σ : δE =
1
Vm

∫

Ωm

σm : δE dΩ, ∀ δε (15)

Thus, the corollary of the Hill–Mandell principle is that the homogeneous macroscopic stress tensorΣ can be written
as the volume average of the mesoscopic stress fieldσm = σm(y) over the RVE:

Σ =
1
Vm

∫

Ωm

σm dΩ (16)

The variational principle and the use of periodic boundary conditions allow concluding that the external surface trac-
tions and body force field on the RVE are reactive terms over the imposed kinematical conditions. These kinematical
boundary conditions are dependent on the deformation modesconsidered at the meso-mechanical level. Thus, the
in-plane static equilibrium of the RVE is reached for each kinematic constraint considered, without any external sur-
face traction and body force terms. The variational principle holds when accounting for the out-of-plane quantities to
assure the energy consistency between scales. The difference lies in the replacement of generalized stresses through
moment and force terms.

The homogenization technique is followed and, by solving the internal static RVE equilibrium using a classical
FE-procedure, the homogenizedΣ andE quantities are derived. Furthermore, the macro-stress couples are obtained
by through-the-thickness integration of the homogeneous macro-stresses according to Eq. (17); whereini, j refers to
the indexx or y (Mxx, Mxy, Myy). The numerical integration is performed accounting only the mid-plane reference
surfaceω. The obtained homogenized moment-curvature relations aredefined per unit of length.

Mij =

∫ z/2

−z/2
σm,ijz dz (17)
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3.4.2 Macro-Scale (FE Discrete Model)
Discrete FE-method based strategies, designated in the literature as rigid body spring models (RBSMs), represent
masonry as the assembly of rigid blocks interconnected by discrete interfaces whereas the deformation is repre-
sented through normal and tangential springs. RBSMs are supported in the theoretical background of Kawai (1978)
works. Yet some differences exist between RBSMs and other discrete-based strategies, as the discrete (or distinct)
element method (DEM) or the applied element method (AEM). Infact, FE methods may not be so efficient for
problems in which several physical discontinuities exist in the media leading to a situation where several distinct
bodies exhibit large relative movements. In such problems,where the contact conditions vary during the analysis
and large displacements are expected, using the DEM strategy for the masonry modeling seems the best choice
(Cundall and Hart, 1971; Lemos, 2007). DEM is, however, based on explicit numerical procedures and its usage
within a dynamic analysis of masonry structures can be prohibitive due to the involved computational process-
ing times. Concerning the AEM, first proposed by Meguro and Tagel-Din (2000), it has features analogous to the
RBSMs. It represents masonry through the assembly of rigid elements interconnected by discrete interfaces that
are also modeled through normal and shear nonlinear springs. The main differences between AEM and RBSM
are that the former assumes recontact between neighboring discrete elements after the occurrence of collapse and
that it tends to employ a micro-modeling approach to describe masonry (Guragain et al., 2006; Malomo et al.,
2018). The latter can be a contentious issue when engineering larger structures. In converse, RBSMs allow to adopt
coarser scales meshes within a macro-modeling approach formasonry and, therefore, increase the computational
efficiency.

Several RBSMs are mentioned in the literature, as the one implemented by Caliò et al. (2012) for the in-plane
study of masonry and extended to the out-of-plane application by Pantò et al. (2017) and Casolo (1999) who in-
vestigated the out-of-plane behavior of a masonry façade.The latter RBSM strategies are quite promising from a
computational standpoint but demand the calibration of both the material and mechanical properties assigned to the
nonlinear springs. Such a procedure can lead to loss of the physical meaning of the input parameters and may be
arguable in cases where experimental evidence is lacking. Hence some authors coupled different RBSMs within
two-scale strategies, wherein the material information ofthe springs is computed through homogenization strategies.
For instance, Milani et al. (2006) implemented a limit analysis-based two-scale strategy in which an RBSM, rep-
resented through rigid triangular constant stress elements and rotational interface springs, is linked with a simple
homogenization strategy for the study of URM panels. Similarly, Casolo and Milani (2010) and Casolo and Uva
(2013) adopted, respectively, a homogenization-based RBSM using quadrilateral rigid elements and rotational inter-
face springs for the nonlinear static and dynamic analysis of masonry structures, respectively. The existing strategies
typically focus on the out-of-plane behavior only and in theuse of simplified analysis methods at a macro-scale,
as limit-analysis, to improve the strategies robustness inthe presence of material softening for quasi-static prob-
lems.

In such a context, a discrete FE-method based procedure is proposed and implemented into the advanced finite
element software ABAQUS (2013). It stems from the RBSM modelpresented by Silva et al. (2017a,b), which is
suitable only for the out-of-plane analysis of masonry structures. Thus, an improved and innovative RBSM is here
addressed as it incorporates both the in- and out-of-plane behavior of masonry being also coupled with the presented
novel homogenization strategy.

The RBSM model is composed by the assemblage of discrete quadrilateral rigid plate elements interconnected,
at its interfaces, through a set of rigid and deformable truss FEs; see Fig. 3 (equivalent to spring elements). The truss
elements govern both the deformation and damage of the structure by being able to mimic the presence of the in-
and out-of-plane failure modes considered in Fig. 3 and within a decoupled characterization. These can append the
material information of the meso-scale homogenized step and thus represent the masonry texture via an equivalent
continuum medium.

The two-scale simplified procedure allows processing the meso- to macro-scale transition only once and, there-
fore, achieve low computational times. The main advantagesof the procedure are threefold: (1) several strategies
with different complexities can be employed at a meso-scale; (2) the concrete damage plasticity (CDP) model imple-
mented in ABAQUS can properly characterize the constitutive material model of the truss elements at a macro-scale,
as it suitable to fully reproduce the homogenized response of the masonry RVE; and (3) the computational robustness
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FIG. 3: Description of the basic in- and out-of-plane FE truss/beamsystems of the discrete macro-unit cell

in presence of material softening can be guaranteed for quasi-static problems by arc-length procedures available in
ABAQUS software.

Specifically, the model combines a stress-based plasticitywith a strain-based scalar damage and can reproduce
several macroscopic properties for tension and compression regimes, such as different yield strengths which repre-
sent masonry orthotropy; different stiffness degradationvalues which represent the masonry full softening behavior;
different recovery effect terms; and rate sensitivity, which can increase the peak strength value depending on the
response strain rate. Moreover, it does consider the latterin the presence of interfaces dynamic and/or cyclic load-
ing and is integrated using the backward Euler method. A general overview of the main features of CDP for the
rate-independent model are presented next; see Lubliner etal. (1989) and Lee and Fenves (1998) for further details.

Effective stresses govern the plastic part of these models (Grassl and Jirásek, 2006) and the stress-strain relation-
ship is ruled, as referred, by an isotropic damage scalar affecting the elastic stiffness of the material. The nominal
stress tensorσ reads:

σ = (1− d)Eel
0 :

(

ε− εpl
)

= E :
(

ε− εpl
)

(18)

whereEel
0 is the initial elastic stiffness of the material;d is the damage parameter, which defines the stiffness degra-

dation (0 for an undamaged and 1 for a fully damaged material), and is designated asdt anddc for tension and com-
pression regimes, respectively;ε is the total strain tensor;εpl is the plastic strain tensor, andE is the initial elastic
stiffness of the material affected by the damage parameters[the degraded initial stiffness given byE = (1− d)Eel

0 ].
A nonassociated flow-rule is assumed for the plasticity model and given by:
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ε̇
pl = λ̇

∂gp
∂σ̄

(σ̄,κp) (19)

in which ε̇
pl is the rate of the plastic strain,λ̇ is the rate of the plastic multiplier,gp is the plastic potential,̄σ is the

effective stress tensor, andκ̇p is the hardening/softening variable. The rate of the hardening/softening variablėκp is
related to the rate of plastic strain given by an evolution law h, as seen in Eq. (20):

κ̇p = h (σ̄,κp) : ε̇
pl (20)

The CDP model uses a yield function based on the works of Lubliner et al. (1989) and Lee and Fenves (1998). The
hardening parameter that controls the meridians shape of the yield shape is given byKc = 2/3, which leads to an
approximation of the Mohr–Coulomb criterion.

Hence, following the input requirements for the CDP model, it is mandatory to obtain effective stress and strain
curves for each angle of the interface and for each bending moment direction. In other words, the material orthotropy
is reproduced at a structural level because the approach offers the possibility to reproduce different input stress-strain
relationships according to the trusses plane. To what concerns the in-plane behavior, the stress quantities are directly
derived from the mesoscopic homogenized values scaled according to the length of the macro-interfaces. For the
out-of-plane behavior, the conversion from moment to stress values must be achieved following Eqs. (21) and (22):

σBending truss =
M

ABending truss × e
(21)

σTorsional truss =
M

ATorsional truss ×H
(22)

Here,M is the bending moment per unit of interface length,H the length of each quadrilateral panel (L is the influ-
ence length of each truss and is equal to half of the mesh size,i.e.,H/2), t is the thickness of the wall,ABending truss

andATorsional truss are the bending and torsional truss areas, respectively, and are given by 0.5× e × H wheree
(value of 10 mm) is the gap between the rigid plates, which ideally should be zero but in practice is assumed small
enough to be able to place trusses between elements.

At last, the stress homogenized input curves may be properlycalibrated (so-called regularization). An elastic
calibration for the stress curves is conducted. The latter is guaranteed separately for both in-plane and out-of-plane
modes and, therefore, a decoupled behavior is derived. Briefly, by assuring the energy equivalence between the dis-
crete mechanism and a homogeneous continuous plate element, it can be easily derived that, for both case studies, the
Young’s moduli of axial, shear, bending, and torsional truss elements is given as:

Ein-plane axial truss
ii =

Ēiie

4L+ 2e
; Ein-plane shear truss

xy =
ḠxyH

2

4e(2L+ e)
(23)

EBending truss
ii =

Ēiit
4H

12(1− ν2)(H + e)e3H
; ETorsional truss =

2Ḡxyt
4

3H2e(2L+ e)
(24)

whereḠxy is the homogenized shear modulus given directly by the slopeof the shear meso-scale homogenized
curve;Ēii is the Young’s moduli of the masonry in the directionii (i represents the cartesian axisx or y); andν is the
Poisson coefficient for the homogeneous media. After the calibration and aiming to fulfill the input requirements for
the CDP model in ABAQUS, the information regarding the post-failure behavior may be introduced for each element
that features material nonlinearity in terms of effective stress and inelastic straiñεck values (i.e., the truss elements).
Since truss elements define the material behavior of the macro-interfaces, the system will undergo only uniaxial
loading conditions. Hence, for the case of uniaxial loadingcondition, the inelastic strain value must be obtained for
each point of the post-peak homogenized curve according to Eq. (25):

ε̃ck = ε− εel0 (25)
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whereεel0 is the elastic strain corresponding to the undamaged material andε is the total axial strain of the multi-
linear stress envelope. If the damage parameterd are introduced, the plasticity model is thus coupled with a damage
description and is suitable for the cyclic behavior description of the material. Again, for the case of uniaxial loading
condition and for a given truss element, the plastic strain valuesεpl are calculated for each point of the input curve
through Eq. (26). Since the permanent plastic strains valuesεpl can be just positive or null, the latter can constitute a
good checkpoint to foresee if the damage parameters have been properly computed.

εpl = εcr −
d

1− d

σP

Eel
0

(26)

In continuum FE-based frameworks, in which material nonlinearity and cracking are attributed to continuum
elements [through, for instance, the proposed anisotropicmacro-model or other models, as the smeared crack by
Rots et al. (1985)], the strain localization is a key issue and the regularization of the FE material constitutive law is
necessary to achieve mesh objectivity of the results. In related multi-scale continuum, FE approaches (see Cervera
and Chiumenti, 2006; Petracca et al., 2016) an alike procedure is implemented. This is typically based on the crack
band theory by Bažant and Oh (1983), whereas the definition of a characteristic length that addresses both scales is
required to affect the fracture energy of the material constitutive model.

For the present homogenization-based strategy, the mesh objectivity problem resorts only on the correction of
the material homogenized data according to the discrete macro-mesh refinement rather than the strain localization
issue at both scales. This is so because, at a meso-scale, both the material nonlinearity and cracking are placed on
mortar joints that are modeled in a discontinuous (interface elements) way (Borst et al., 2006); and, at a macro-scale,
an RBSM is adopted in which material softening and cracking is lumped on individual 2-node linear truss elements
(one integration point), for which a characteristic lengthof 1 is generally given (ABAQUS, 2013; DIANA, 2017).

Thus, the so-called regularization step is here performed aiming to correct the elastic stiffness and post-peak frac-
ture energies of the stress-strain curves that serve as input for the CDP model. The derived meso-scale homogenized
curves (per interface unit length) are first scaled, according to the macro-interface lengthH, and second affected by a
regularization factorfr depending on if it represents an in-plane (normal and shear)or an out-of-plane (flexural and
torsional) mode.

Consider, for instance, that̃E = [ε1 ε2 · · · εn−1 εn] andΣ̃ = [σ1 σ2 · · · σn−1 σn] are then-dimensional
vectors which define, respectively, theσ-ε homogenized curve being regularized (n is the number of points of the
curve). After scaling the stress values ofΣ̃ according to the macro-scale mesh size, it is required to regularize the strain
values ofẼ. In this regard, the regularization factorfr, is, for a given truss element set, defined as the relation between
the elastic stiffness of theσ-ε curve under study and the calibrated Young modulus obtainedfor each deformable truss
through Eqs. (23)–(24). The procedure to compute the reference elastic stiffness value is assumed to be performed
for the designated pointC; the point of theσ-ε homogenized curve that has a stress given as one-third of thepeak
value. Thus,fr is computed asfr = σC/(εCEcalibrated) where,Ecalibrated is the corrected Young modulus obtained
for each truss type following Eqs. (23)–(24).

In other words, the regularization terms can be simply written asfmode-I
r = Ēii,C/E

in-plane axial truss
ii andfmode-II

r

= Ḡxy,C/E
in-plane shear truss
xy for the in-plane macro-trusses; and asfbending

r = Ēii,C/E
bending truss
ii or f torsion

r =

Ēxy,C/E
torsional truss
xy for the out-of-plane macro-trusses. Such parametersfr affects all the strains of the homoge-

neous stress-strain curves of the corresponding trusses. By correcting the strain axis to calibrate the elastic stiffness
value the operator affects, as well, the post-peak curve strains and so, in an implicit way, the fracture energy itself. It
may be pointed out that, for the out-of-plane truss elements(both the torsion and bending elements), the scaling and
the regularization steps are performed only after the conversion of homogenized moment values into stress quantities
according to Eqs. (21) and (22).

3.5 Strain-Rate Dependency of the Modeling Strategies

The use of static strength properties can lead to inaccurateresults when evaluating the masonry behavior under fast
dynamic actions since these properties exhibit an enhancement according to the strain rate level of the applied load.
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Research mainly centered on concrete-like materials can befound in the literature, where assumptions intrinsically
related with material effects are reported to explain the phenomena, such as the lateral inertial confinement, end
support friction and scale-effect (Le Nard and Bailly, 2000; Hao et al., 2013; Hao and Hao, 2013).

Experimentation is, in the field of fast dynamics, still at a higher level with respect to numerical modeling (Buchan
and Chen, 2007). Some laboratory tests have been performed to evaluate the response of the masonry under such
extreme loads, see Dennis et al. (2002), Baylot et al. (2005), Hao and Tarasov (2008), Pereira et al. (2015), Pereira
and Lourenço (2016a,b). In converse, few numerical studies on the response of masonry under blast or impact actions
are found in the literature: Wu et al. (2005), Burnett et al. (2007), Zapata and Weggel (2008), Macorini and Izzuddin
(2014).

The strain-rate dependency of the masonry can be represented through the use of visco-elastic models aiming
at strain-rate regularization (Sluys and De Borst, 1992; Georgin and Reynouard, 2003). This seems an adequate and
numerically convenient strategy, especially if one notices that introducing, for instance, the well-known Duvaut and
Lions (1976) model within an FE plasticity model is well documented. Yet the definition of a viscosity regularization
parameter still lacks objectivity and requires extensive sensitivity studies for the case of masonry.

In such a context, the presented inviscid advanced FE formulations have been formulated to account for this
phenomenological feature of masonry by making use of dynamic increase factors (DIFs). The authors believe that
these numerical models may strongly contribute to further advances on this complex topic. The DIFs directly affect
the static material properties adopted and can be introduced in the strategies via: (i) a strain-rate law, typically a
logarithmic curve, for each selected parameter; or (ii) a discrete DIF value, independent from the strain rate level,
which is a priori assumed and adopted as constant. The former may yield more realistic values, but the latter is
straightforward, simple and more aligned with normative proposals. These data can be deduced through experimental
campaigns as seen in Pereira and Lourenço (2016a) and Hao and Tarasov (2008).

According to the information at disposal, different DIF values are obtained for each mechanical parameter of
masonry, which allows the expansion or contraction of the strength envelope, thus depending on the load strain-rate;
as schematically described in Fig. 4 for the case of the composite interface model.

4. APPLICATIONS

4.1 Engineering a Meso-Scale Mechanical Problem

The majority of the existing research on periodic masonry deal with running-bond texture within the case of a
single-wythe wall (Zucchini and Lourenço, 2002; Milani, 2008; Pau and Trovalusci, 2012; Taliercio, 2014; Rec-
cia et al., 2018). Some features still somehow seem under-investigated, as: (i) the analysis of the effect of potential

FIG. 4: Schematic representation of the yield envelope for the composite interface model adopted affected by the DIFs
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discontinuities in the masonry thickness, when two- or three-wythes of masonry are present; (ii) the effect of three-
dimensional shear stresses; and (iii) the study of other periodic textures, as the English-bond.

In this context, a study at a meso-scale is presented next. This is aimed to assess the mechanical effect of the
mid-thickness vertical joint of English-bond masonry walls and the effect that three-dimensional shear stresses play.
The conclusions are drawn in terms of moment-curvature curves.

The selected case study concerns the English-bond masonry tested experimentally by Candeias et al. (2017). The
problem is schematically described in section Fig. 5(a), which accounts for three unit-cell models. The first-unit cell

(a)

(b)

FIG. 5: Meso-scale mechanical study of an English-bond masonry texture: (a) numerical models assumed for the RVE description;
(b) results obtained in terms of moment vs. curvature curvesusing a KP model and two DNS 3D models: one that considers, and
the other that excludes the existent vertical joint on the mid-thickness. Deformed configurations at peak and ultimate post-peak
point are plotted for both models.
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model advents from a Kirchhoff-plate mesoscopic model in which the aforementioned homogenization scheme (see
Section 3.3) is followed. The remaining two unit-cell models follow a direct numerical simulation (DNS models)
or a micro-modeling approach (as referred in Section 3.1): the latter does not take into account the discontinuity
along with the thickness, whereas the former considers it, meaning that it is explicitly modeled. The adopted material
properties for units areEu = 11,000 MPa;vu = 0.25 and for mortar jointsEm = 2,200 MPa;vm = 0.20; and
the inelastic mechanical parameters for mortar joint interfaces are given by:ft = 0.105 MPa,GI

f = 0.012 N/mm,
c = 0.20 MPa,GII

f = 0.05 N/mm,φ = 30 degrees,fc = 2.84 MPa;GIV
f = 4.00 N/mm. For all the cases, the

material nonlinearity is lumped in the mortar joints by using interface FEs within the presented multi-surface plasticity
model. Note that the linear elastic relation between the generalized stresses and strains of the interface FEs is given
by the classical constitutive equation of Hooke’s law,σ = Dε. Considering a line FE interface [for the adopted
plate theories Kirchhoff–Love (KP) and a Mindlin–Reissner(MP) models], the elastic stiffness matrixD is given as
D = diag{kn, ks}. The values of the normal (kn) and shear (ks) mortar joints stiffness terms can be easily computed
through Eqs. (27) and (28), if considered that the masonry components are represented by a serial chain of springs,
under a stack-bond, with uniform stress distributions in both the unit and mortar joints. Therefore, the obtained values
for kn = 183 N/mm;ks = 72.6 N/mm, respectively.

kn =
EuEm

tm(Eu − Em)
(27)

ks =
GuGm

tm(Gu −Gm)
(28)

wheretm = 15 mm is the thickness of the mortar joints;Gu andGm are the shear modulus of the unit and mortar,
respectively. Figure 5(b) shows the obtained results. It isnoted that the presence of the vertical discontinuity in the
masonry thickness has a marginal effect on the RVE vertical bending behaviorMyy. On the contrary, the model
with the discontinuity manifests a lower capacity for both the horizontalMxx and torsionalMxy moments with
differences ranging the 33% and 17%, respectively. Additionally, if the KP model results are considered, an error of
52% is expected for the horizontal bending moment case. Suchresults prove the importance of addressing the mortar
discontinuities and the three-dimensional shear effects along the thickness of a masonry wall; especially in cases
where the thickness value is significant, as seen in Silva et al. (2018). Also, this highlights the care that needs to be
taken when adopting a modeling strategy for a given case study. The total processing time (CPU time requirements
using a laptop with an i7-4710MQ CPU) of the simulations was 81 s, 246 s, and 249 s for the KP model, DNS model
without discontinuity and DNS model with discontinuity, respectively.

4.2 Engineering Complex Problems: Meso/Macro Scales

4.2.1 LNEC Brick-House Mock-Up

The selected case study comes from the experimental work performed in LNEC by Candeias et al. (2017), which was
developed to foster a blind test prediction by different invited authors on the dynamic behavior of a masonry structure.
The studied brick structure is composed of three walls in a U-shaped plan arrangement. The main façade (East plan)
presents a gable wall and is linked with two transversal walls that act as abutments (North and South plans). These
were constructed with clay brickwork in an English-bond arrangement of 235 mm of thickness (slenderness ratio
about 1:10). The geometrical features are seen in Fig. 6(a).The brick mock-up was tested until collapse in a shaking
table under a unidirectional seismic loading. The seismic input was applied in a perpendicular direction (E-W) to
the main façade and derives from the N64E strong ground motion component associated with the February 21, 2011
earthquake that occurred in Christchurch, New Zealand. After the filtering and cropping, the latter time signal served
as a reference for the seismic input generation and is composed of eight accelerograms. These have been obtained
from a scaling process, starting from one up to three. The input signal considered in the dynamic analysis is displayed
in Fig. 6(b).

Two (out of three) of the presented numerical approaches areused for this analysis as depicted in Fig. 6(c). In
particular, the macroscopic model and the simplified two-scale model. Again, the former represents masonry as an
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(a)

(b)

(c)

FIG. 6: Case study: (a) the geometry of the case study; (b) the experimental input seismic signal; (c) case study and the numerical
models considered for the dynamic analysis

isotropic material and has been defined here to follow a totalstrain rotating crack constitutive material model, whereas
an exponential and parabolic law is adopted, respectively,for the tensile and compressive behaviors. An approximated
mesh size of 100 up to 150 mm was defined using 3D finite elements, and such fine discretization intends to by-pass
numerical problems faced during the performed computations. For the latter, a direct numerical simulation (DNS 3D
mode with discontinuity) has been assumed at a meso-scale toderive the homogenized quantities, wherein the vertical
mortar discontinuity is present in the thickness direction. At a macro-scale, a mesh size of 200 mm is adopted.

The calibration of the elastic brickwork stiffnesses (Exx, Exy, andEyy) has been reached by accounting with
the modal identification data available. For the strength properties, as the tensile strength, cohesion, and compressive
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strength, the values from Candeias et al. (2017) have been used. The parameters that control the material curves
beyond the peak, namely the fracture energies, refer to typical masonry literature values and no experimental reference
is known.

Dynamic analysis has been performed by subjecting the structure to the defined seismic input. Since the structure
has collapsed for the last accelerogram (acc 8), the comparison is achieved for the accelerogram seven (acc 7) as
shown in Fig. 7. The results give good indications of the ability of the presented two-step approach in the dynamic
behavior prediction of the English-bond structure, as a good agreement was found with the experimental time-history
displacements. Even if slight differences are visible for the peak displacements, the two-scale model also accurately
reproduces the residual displacement.

On the other hand, the macroscopic model seems to overestimate the structure capacity. The response is far
for being alike with the behavior reproduced by the latter procedure, despite sharing both the same material and
mechanical input. The nonconsideration of the existent vertical discontinuity seems to be of utmost importance.
In fact, the latter is paramount as it significantly decreases the bending and torsional capacities. Furthermore, the
macroscopic approach makes use of a hysteretic behavior with secant unloading-reloading branches, a feature that
leads to the underestimation of the energy absorption and isincapable to record permanent plastic deformations.

Additionally, Fig. 8 reports the observed experimental andnumerical damage maps. From the two-scale and
macroscopic models, a vertical crack in the gable wall (due to horizontal bending) is observed. In the former, the
onset of cracking is registered as well, due to torsional movements in the east plan opening towards the corners.
Both strategies captured moderate damage in the east-northcorner, even if this is not clear from the experimental
observations. Some in-plane damage around the north piers is also registered. In general, a reasonable agreement
has been found for such a complex study. The total processingtime (CPU time requirements using a laptop with
an i7-4710MQ CPU) of the simulations was 76 min and 720 min forthe two-scale (DNS 3D) model and the FE
macro-model, respectively.

FIG. 7: The obtained time-history displacements for the last analyzed accelerogram (acc 7)
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(a) (b) (c)

FIG. 8: Observed damage: (a) after the experimental series of sevenaccelerograms (from acc 1 to acc 7); (b) for the macroscopic
model at the instantt = 160 s; (c) for the two-scale model at the instantt = 160 s

4.2.2 Sheffield University Parapet Wall

Experimental data available from the research reported by Gilbert et al. (2002a) was used to assess the ability of the
presented numerical strategies in the prediction of the dynamic behavior of masonry when subjected to a low-velocity
impact load. The numerical strategies presented in Section3 are addressed [Fig. 9(a)–9(c)]. Note that a finer mesh
refinement has been assumed for all the strategies.

The selected parapets are designated as C6 and C7 and are replicates. Their assemblage was executed with
strong concrete blocks and weak mortar. The parapet walls and brick dimensions, as well as the boundary conditions
assumed, are reported in Fig. 9(a). Aiming to model a vehicle-like impact at both mid-height and length of the walls,
a triangular time-history load distribution, in which the peak value is equal to 110 kN, was applied. The deformation
of the studied parapets was recorded in a node located 580 mm above the base and deviated 250 mm from the center.

The static material properties and the rate-dependency issue was addressed for all the formulations; for the
macroscopic model in Rafsanjani et al. (2015a), for the mesoscopic model in Rafsanjani et al. (2015b), and for the
two-scale model in Silva et al. (2017a). To guarantee the consistency and representativeness of the comparison, the
models used the same analytical expressions for theDIFs. In particular, the laws made available by Hao and Tarasov
(2008), who studied the experimental dynamic behavior of a series of brick and mortar specimens under uniaxial
compressive tests through a tri-axial static-dynamic apparatus. As information regarding the strain-rate effects on
tensile and shear masonry properties was lacking, theDIF regression equations for the tensile and shear material
parameters (as the tensile ultimate strengthσt0,mortar, mode-I fracture energyGI

f , cohesionc and mode-II fracture
energyGII

f ) were assigned to be equal to the compressive ones.
The obtained results are analyzed in terms of displacement magnitude with respect to time. The comparison

is achieved through the experimental results (Gilbert et al., 2002) and complemented with a mesoscopic strain-rate
independent model by Burnett et al. (2007). Figure 10 shows that the curve from Burnett et al. (2007) leads to
excessive displacements (and under stiff response). This author presented a simplified FE mesoscopic model (micro-
modeling approach) that represents mortar joints with interface elements. This strategy is strain-rate independent,
ergo their accuracy is highly dependent on the static material properties adopted. The use of static strength properties
instead of dynamic ones may mislead the results (i.e., an underestimation of the collapse load may occur).

Conversely, the presented numerical models are reasonablyaccurate in predicting the peak displacement, with a
relative error of around 10%. Regarding the post-peak behavior, it is noticeable that the structure displacement restitu-
tion of the two-scale model is practically inexistent. Yet,similarly to the experimental results, the latter is not entirely
reproduced by the other three numerical models under comparison, presenting both an out-of-plane displacement that
slightly decreases in post-peak after the time instant of 180 mm. This is possibly due to the irreversible displacements
computed (permanent plastic strains) within the cyclic behavior of the CDP model. The response is still remarkable.
The total processing time (CPU time requirements using a laptop with an i7-4710MQ CPU) of the simulations is
0.2 h (12 min) for the two-scale (DNS 3D) model, 2.5 h for the FEmacro-model, and 23 h for the FE micro-model.
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(a)

(b) (c) (d)

FIG. 9: Sheffield University parapet wall: (a) geometry of the running bond masonry parapets C6 and C7 tested by Gilbert et
al. (2002a); and the numerical models presented by the authors that are used in this analysis; (b) the strain-rate FE macroscopic
model (macro-model approach); (c) the strain-rate FE mesoscopic model (micro-modeling approach); (d) the strain-rate two-scale
homogenized-based model

FIG. 10: Time history of the out-of-plane displacement obtained forthe control node of the parapets C6 and C7 and deformed
shapes observed with the proposed model for the time instants 0.5 ms, 1.41 ms, 25 ms, and 300 ms
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4.3 Engineering super Large/Complex Problems: Macro-Scal e

4.3.1 Cathedral of the Blessed Sacrament

The Cathedral of the Blessed Sacrament is located in Christchurch city (New Zealand). The building is based on
Roman style and was built using Oamaru limestone. The geometrical features are briefly addressed in Figs. 11(a) and
11(b). The building suffered a strengthening interventionin 2004, in which the structural safety level was assumed to
be adequate. Yet a sequence of four main seismic events over aperiod of 9 months, between September 4, 2010 and
June 13, 2011, caused progressive damage and local collapseof the two bell towers. Recognizing the symbolism and
type of loss associated with this Basilica, a numerical study was conducted to evaluate potential retrofitting strategies
that could mitigate the extensive damage found and avoid thecollapse of the bell towers. Two strengthening proposals
to be implemented in the Cathedral, considering the strengthening intervention of 2004, were analyzed. The goal was
to guarantee the ultimate limit state (ULS), that is, to prevent the collapse of structural elements for the highest mean
horizontal PGA recorded in the 2010 and 2011 earthquakes. Thus, the value assigned as performance reference for
the structural assessment is given by 0.43 g and is defined by the February 2011 seismic event [it corresponds to a
period of return around 400 years for new building designs according to the New Zealand Government (2004)].

An FE numerical model was prepared using the presented continuum FE-based anisotropic model (macro-
modeling) implemented in the software DIANA (2017). A total-strain fixed crack model was adopted to represent
the physical nonlinear behavior. For such a large structure, aiming at reducing the structural global number of degrees
of freedom of the Basilica’s numerical model, beam, shell and solid finite elements were used. The final FE mesh of
the Basilica’s model is presented in Fig. 11(c) and corresponds to a total number of 178,719 degrees of freedom. The
material and mechanical properties were based on information provided by the NZ authorities and from literature, see
Silva et al. (2018) for more details.

The seismic performance of the Cathedral was evaluated through a pushover analysis. This is a time-invariant
analysis (static) and is more convenient than a nonlinear dynamic analysis with time integration as it is computational
more attractive. A uniform pattern was adopted for the applied horizontal loads, meaning that the distribution of
applied forces is proportional to the mass distribution of the structure.

For the first strengthening proposal, a set of 12-meters longstainless-steel tie rods was applied to the structure
at the level of the floors being anchored in the slabs. The aim was the improvement of the connection between
orthogonal walls, allowing a better force distribution into the nave walls and preventing the out-of-plane collapse of
the bell towers. The second strengthening proposal kept thethree tie rods of the first proposal at the main façade
but includes ring beams at the bell towers instead of the stainless-steel tie rods. Such addition aimed to improve
the connection between structural elements, namely the bell towers and nave walls. Furthermore, it allowed better
confinement for the bell towers in order to facilitate a better force distribution and prevent out-of-plane collapse.

The efficiency of the strengthening proposals was evaluatedbased on the pushover analyses for the longitudinal
direction – X only [the out-of-plane mechanism of the bell towers and main façade were found Silva et al. (2018) to
have the lowest load capacity]. The capacity curves depicted in Fig. 12 shows a clear improvement in the load and

(a) (b) (c)

FIG. 11: Geometry of the Blessed Sacramento Basilica: (a) west elevation; (b) plan; (c) the assumed FE numerical model
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FIG. 12: Obtained capacity curves with and without the strengthening proposals

inelastic displacement capacity of the structure, for which at least a maximum horizontal load of about 0.57 g was
obtained (strengthening proposal 2). The first strengthening proposal allows at least a maximum horizontal load equal
to 0.49 g. It is noted that the maximum horizontal load applied to the nonstrengthened model is equal to 0.35 g.

The damage assessment was evaluated based on the maximum principal tensile strain, which is a good qualitative
indicator of cracking. The structural strengthening undertaken in 2004 played a decisive role in the avoidance of
further damage, but this strengthening was insufficient to prevent local failure mechanisms. The crack pattern of the
nonstrengthened model shows that the Basilica suffered severe damage in both bell towers and in the vicinity walls
for a horizontal load of 0.35 g [Fig. 13(a)]. Extensive cracking due to in-plane shear failure is observed. Figures 13(b)
and 13(c) show that the results are in accordance with the intended one, as insignificant damage was observed at the
bell tower walls. Hence, the strengthening measures distribute the loads to the nave walls and nave slabs, causing
more damage to these elements, namely some cracks on the firstfloor of the nave.

Finally, the seismic performance of the structure accounting with the strengthening proposals was also evaluated
for a horizontal load equal to 0.43 g (PGA of the February 2010earthquake). Figure 14 presents the principal tensile
strains, from which it can be observed that the model with thefirst strengthening scheme suffered more damage than
the one with the second strengthening scheme. Thus, the firststrengthening proposal is an effective solution as it
creates new load paths and delays failure. However, it does not provide enough strengthening for the two-bell towers
in order to change its condition as the most vulnerable elements of the structure. The second strengthening proposal,

(a) (b) (c)

FIG. 13: Comparison of principal tensile strains for the horizontalload equal to 0.35 g: (a) nonstrengthened model; (b) strength-
ened model 1; (c) strengthened model 2
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(a) (b)

FIG. 14: Comparison of principal tensile strains for the horizontalload equal to 0.43 g: (a) strengthened model 1; (b) strengthened
model 2

which includes stainless steel rings, presents the best seismic performance guaranteeing a safety level for the bell
towers of at least 40% of the full code requirements (Silva etal., 2018).

The structural strengthening undertaken in 2004 played a decisive role in the avoidance of further damage, but
it was insufficient to prevent local failure mechanisms. Thenumerical results indicate that the structure is unsafe for
an earthquake such as the one experienced in February 2011, in which the collapse of the bell towers and significant
damage would be expected. The model allowed the identification of two possible strengthening solutions that could
change the outcome of similar seismic events to be addressed. The total processing time (CPU time requirements
using a laptop with an i7-4710MQ CPU) of the simulations is around 14 h for the nonstrengthened numerical model
accounting with the full structure.

4.3.2 Al-Askari Holy Shrine: Blast Load

The Islamic cultural heritage site of Al-Askari Holy Shrineis situated in Samarra, Iraq; its geometry is shown in Fig.
15(a). The Al-Askari shrine suffered a terrorist attack in February 2006. A large quantity of explosive charge (200
kg TNT) had been placed at the top of the dome by taking advantage of the existing scaffold due to the ongoing
conservation works (Pandey et al., 2006). The blast load destroyed the dome and the resulting debris damaged the
buildings’ roof. The majority of the dome’s structure collapsed inside the mosque (Baylot and Bevins, 2007). Also,
significant damage has been reported in both the East and Westfaçades [Fig. 15(b)].

The continuous anisotropic FE macro-model with strain-rate dependency, presented in Section 3.2, has been used
in this study. The main goal is the demonstration of the capability that the proposed advanced numerical tool (meaning
the plasticity model) offers in the analysis of full masonrystructures under blast load. In this regard, a numerical
model featuring the structure of the mosque was developed inABAQUS (2013). The supports were defined as fixed

(a) (b) (c)

FIG. 15: Islamic cultural heritage site of Al-Askari Holy Shrine: (a) geometry; (b) local where the blast detonation took place
(i.e., placed at the top of the dome); (c) FE mesh adopted for the continuum macroscopic model
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and only solid FEs were used (i.e., 8-noded linear bricks (reduced integration, hourglass control) and 4-node linear
tetrahedron). The final model has a total of 112,623 degrees of freedom and the FE mesh is represented in Fig. 15(c).

The material anisotropy has been considered following adequate literature information, see Rafsanjani (2015). To
account with the strain-rate dependency of the masonry composite yield surface, the required DIF laws from the study
by Pereira and Lourenço (2016a) have been used. In order to keep the problem with a pure Lagrange formulation,
the blast load has been applied as pressure load profiles applied in different zones of the building to assure the
representativeness of its distribution. A total of eight zones with different stand-off distances have been modeled. The
results of the dynamic analysis are shown next in terms of contour plots for two instant timest.

For a time instant equal tot = 25 ms, immediately after the occurrence of the explosion (that occurs for at = 20
ms), the maximum principal plastic strain is given in Fig. 16(a). Significant values are localized in the dome, whereas
the incremental deformed shape of Fig. 16(b) shows displacements in the order of 17 cm. The level of loading seems
high enough for this structure, hence severe nonlinearity for the masonry behavior and consequently, intense crack
formation is reported. Note that the plasticity model does not have incorporated a damage model, yet the plastic
strains could be a good qualitative indicator of damage.

(a) (b)

(c) (d)

FIG. 16: Results obtained for the Islamic cultural heritage site of Al-Askari after the numerical analysis of a blast load: (a)
maximum principal plastic strain after the blast load (t = 25 ms); (b) incremental deformed shape (SI unit, m) after theblast load
(t = 25 ms); (c) maximum principal plastic strain after the most significant over-pressure profiles (t = 70 ms); (d) incremental
deformed shape (SI unit, m) after the most significant over-pressure profiles (t = 70 ms)
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The onset of significant damage is visible in the top of the dome but instantly includes its bottom part around the
openings. Due to the inertial forces, the dome continues to move during the unloading phase and other parts of the
structure, as the roof, minarets, and side facades, are affected. This is addressed in Fig. 16(c), where the maximum
principal strain obtained is plotted fort = 70 ms (i.e., after the occurrence of the blast and the most significant
over-pressures profiles). It is clear now that the damage wasmore spread in the latter elements, as supported by the
incremental deformed shape of Fig. 16(d).

The qualitative evaluation of the damage is presented in detail by Rafsanjani (2015). It has been concluded that
the damage pattern found certainly leads to the collapse of the dome and to extensive degradation of both the East and
West façades. The addressed conclusions go hand-in-hand with the reported real behavior, ergo proving the adequacy
of the advanced strain-rate FE macroscopic model. One may note, however, that the application of the blast load can
be a cumbersome task, as demonstrated by other studies (Baylot and Bevins, 2007). The total processing time (CPU
time requirements using a laptop with an i7-4710MQ CPU) of the simulation is 101 hours.

5. FINAL REMARKS

FE-based numerical strategies currently have a primary role in the mechanical behavior analysis of masonry struc-
tures. Its usefulness is barely questioned, as these are used daily by both the academic and professional communities
to solve problems within manageable timelines that otherwise would defy treatment (Linz, 1988). Since computa-
tional modeling relies on the physical insight of materials, further developments are continuously needed aiming to
decrease the related epistemic and modeling uncertainties.

In such a context, the present article addressed the importance of computational strategies for the numerical
analysis of masonry structures. Three advanced FE-based models have been proposed and include an FE micro-
model, an FE macro-model, and a novel simplified FE2 multi-scale model. These models can reproduce the masonry
orthotropy, full softening behavior, and loading strain-rate dependency.

The proposed strategies have been used for the engineering of small to large, super-large and complex problems
with a focus on the well-known out-of-plane vulnerability of unreinforced masonry structures. The evaluated case
studies are the following ones: (i) meso-scale static characterization of the out-of-plane behavior for an English-bond
masonry wall; (ii) seismic analysis of the LNEC brick house prototype and the Cathedral of the Blessed Sacrament;
(iii) impact load analysis of the Sheffield University parapet wall; and (iv) the blast load analysis of the Al-Askary
Holy Shrine.

The small-scale problem included the characterization of the out-of-plane homogenized behavior of an English-
bond masonry bond at a meso-scale. The results proved that the mid-thickness vertical joint of an English-bond
masonry wall leads to the reduction of its out-of-plane capacity. Reduction of 33% and 17% were found for the hor-
izontal bending and torsional moment peak values, respectively, between a three-dimensional numerical model with
and without the discontinuity. This effect has been also witnessed for the large-scale study of the LNEC brick house
mock-up. Here, a good agreement between the experimental dynamic response and the one predicted by the simpli-
fied multi-scale strategy was found. The FE macro-modeling strategy is, however, unable to capture the lessening of
the masonry bending strength and hence to properly predict the structure’s behavior when subjected to a seismic load;
expected as it assumes an isotropic behavior for the homogeneous equivalent material.

Concerning the complex problem of the Sheffield University parapet wall subjected to an impact load, a good
resemble was achieved for all the proposed strategies. A maximum relative error of 10% was found for the out-
of-plane displacement of the control node. This error is, however, only achievable since the three proposed models
account with the strain-rate dependency of the masonry by dynamic increase factors (DIFs). It has been shown that
static material and mechanical properties do not offer adequate insight into the masonry response for fast dynamic
problems.

For the super-large and complex problems, as the Cathedral of Blessed Sacrament and the Al-Askari Holy Shrine
case studies, the use of an FE macro-model seemed to be the most convenient one as it allows a most straightforward
modeling stage. Regarding the former, the numerical model allowed the prediction of the proneness to collapse of the
two bell towers of the Cathedral when subjected to the Christchurch seismic events of 2010 and 2011; but, as well, to
compare the efficiency of two-retrofitted interventions. Regarding the latter, the FE macro-model allowed to predict
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well the collapse of the main dome and capture the severe damage found in both the East and West façades of the
Mosque when subjected to a blast load. Although an FE macro-modeling approach is very practical, some attention is
recommended when a more detailed description of the response, damage onset, and propagation is desired for a given
structural element, as concluded by the obtained smeared damage in the latter problems. In such cases, down-scaling
through a micro-modeling or a multi-scale approach could bea proper alternative.

From the conducted analyses, it is noteworthy to address that the modeling strategies adopted for the mechanical
study of periodic masonry are mainly dependent on the dimensions of the structure under investigation. For meso-
scale problems (order of centimeter), a purely micro-modeling approach seems preferable. Yet, for large or super-
large problems (order of meters), as the study of the dynamicbehavior of a structural wall or building, the use of a
macro-modeling or simplified multi-scale approach is generally followed. In such cases, the potential of a simplified
multi-scale model and the inadequacy of an FE micro-model isespecially clear for the Sheffield University parapet
wall case study. From a computational standpoint, the former is 115 times faster than the FE-micro model and 12.5
times faster than a continuous FE macro-model.

Through a logical extension, a simplified multi-scale approach can significantly decrease the CPU times obtained
when using an FE macro-model in the study of super large and complex problems. For instance, the CPU time of 14
hours and 101 hours obtained using an FE macro model for the Cathedral of the Blessed Sacrament and the Al-Askari
Holy Shrine Mosque case studies, respectively. It is important to address that the modeling step of such structures
using the proposed multi-scale model, through a discrete-based strategy, can be also cumbersome. Hence, the decision
of the best strategy should account with the trade-off between the required time for the numerical model preparation
and the numerical analysis.

Lastly, the authors stress that the presented FE computational strategies have been implemented in powerful
advanced FE software, such as DIANA (2017) and ABAQUS (2013). The latter software is already able to handle
parallel computing and thus decrease the required running processing times of the analysis (more evident in large-
scale/complex problems). This is an important feature, as it has been seen that the engineering solutions are largely
conditioned by the required computational cost associatedwith the modeling approach followed. Perhaps in a near
future, when more powerful computers are of common use (as quantum computers), the engineering of a given
problem through a full continuous micro-modeling approachfrom the meso- to a structural-scale will be, even if
contentious from the number of input parameters that demand, feasible from a CPU time standpoint.

ACKNOWLEDGMENTS

This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme – COM-
PETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project
POCI-01-0145-FEDER-007633.

REFERENCES

ABAQUS, Finite Element Analysis (Theory Manual), Release 6.6 (software), Providence: RI:Dassault Systèmes Simulia Corpo-
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Bažant, Z.P., Xiang, Y., and Prat, P.C., Microplane Model for Concrete. I: Stress-Strain Boundaries and Finite Strain, J. Eng.
Mechan., vol. 122, no. 3, pp. 245–254, 1996. DOI: 10.1061/(ASCE)0733-9399(1996)122:3(245)

Berto, L., Saetta, A., Scotta, R., and Vitaliani, R., An Orthotropic Damage Model for Masonry Structures,Int. J. Numer. Methods
Eng., vol. 55, no. 2, pp. 127–157, 2002. DOI: 10.1002/nme.495

Blanco, P.J., Sánchez, P.J., de Souza Neto, E.A., and Feij´oo, R.A., Variational Foundations and Generalized Unified Theory of
RVE-Based Multiscale Models,Arch. Comput. Methods Eng., vol. 23, no. 2, pp. 191–253, 2016. DOI: 10.1007/s11831-014-
9137-5

de Borst, R., Remmers, J.J., and Needleman, A., Mesh-Independent Discrete Numerical Representations of Cohesive-Zone Mod-
els,Eng. Fracture Mechan., vol. 73, no. 2, pp. 160–177, 2006. DOI: 10.1016/j.engfracmech.2005.05.007

Buchan, P.A. and Chen, J.F., Blast Resistance of FRP Composites and Polymer Strengthened Concrete and Masonry Structures –
A State-of-the-Art Review,Compos. Part B: Eng., vol. 38, no. 5, pp. 509–522, 2006. DOI: 10.1016/j.compositesb.2006.07.009

De Buhan, P. and De Felice, G., A Homogenisation Approach to the Ultimate Strength of Brick Masonry,J. Mechan. Phys. Solids,
vol. 45, no. 7, pp. 1085–1104, 1996. DOI: 10.1016/S0022-5096(97)00002-1

Burnett, S., Gilbert, M., Molyneaux, T., Beattie, G., and Hobbs, B., The Performance of Unreinforced Masonry Walls Sub-
jected to Low-Velocity Impacts: Finite Element Analysis,Int. J. Impact Eng., vol. 34, no. 8, pp. 1433–1450, 2007. DOI:
10.1016/j.ijimpeng.2006.08.004
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