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The development of a general framework for robust reliability-based design of base-isolated structural systems under
uncertain conditions is presented. The uncertainties about the structural parameters as well as the variability of future
excitations are characterized in a probabilistic manner. Isolation elements composed of nonlinear lead rubber bearings
are used to model the isolation system. The optimal design problem is formulated as a nonlinear constrained mini-
mization problem involving multiple design requirements, including reliability constraints related to the structural
performance. Failure events defined by a large number of random variables are used to characterize the reliability of
the system. A sequential optimization approach based on global conservative, convex, and separable approximations
is implemented for solving the optimization problem. An example problem that considers a 10-story building under
stochastic ground excitation illustrates the beneficial effects of base-isolation systems in reducing the superstructure
response.
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1. INTRODUCTION

There has been growing interest in recent years in the atijolic of base-isolation techniques in order to improve
the earthquake resistant performance of civil structuneb as buildings, bridges, nuclear reactors, etc. [1-4hdh

the potential advantages of seismic isolation and the texbrancements in isolation-system products have led to the
design and construction of an increasing number of seidlyiisalated structural systems. Also, seismic isolation
is extensively used for seismic retrofitting of existingustures [5, 6]. One of the difficulties in the design of base-
isolated structural systems is the explicit consideratibthe nonlinear behavior of the isolators during the design
process. Similarly, the consideration of uncertainty albe structural model and the potential variability of figu
ground motions are major challenges in the analysis angjadedithese systems. In view of these issues, this work
introduces a general framework for robust reliability-dddesign of base-isolated structural systems under @icert
conditions. The uncertainty about the structural and aXoit model parameters is characterized in a probabilistic
manner. A probability density function that incorporatesitable knowledge about the system is assigned to the un-
certain parameters involved in the problem. In this settiiregdesign process is called robust stochastic systemrdesig
and the associated design optimization problem, stochdesign optimization. The uncertain ground excitation is
modeled as a nonstationary stochastic process with uitertadel parameters. In particular, a class of point-source
models is adopted in the present formulation [7]. It is engigread that the purpose of this contribution is not in the
development of a specific stochastic model for ground metiaut to introduce a general framework for solving a
challenging class of structural optimization problemsldtion elements composed by uniaxial lead rubber bearings
are used to model the isolation system. The hysteretic i@hafthe bearings is characterized by the Bouc-Wen-type
model [8]. The reliability-based design is formulated agalmear constrained minimization problem involving mul-
tiple design requirements, including reliability congtita. First excursion probabilities that account for theemainty
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in the system parameters as well as in the excitation aretosgthracterize the system reliability. Such probabditie
are estimated by an adaptive Markov chain Monte Carlo pnoeef]. A sequential optimization approach based
on global conservative, convex, and separable approamats implemented for solving the optimization problem
[10-12]. The optimization scheme is combined with the useoofimon random numbers throughout all iterations
in the optimization process. The approach explicitly taikés account all nonlinear characteristics of the combined
structural system (superstructure-isolation systeminduhe design process. A numerical example is presented to
illustrate the applicability and effectiveness of the mrepd framework in the context of reliability-based optimal
design of base-isolated systems in the presence of untstai

2. STOCHASTIC DESIGN PROBLEM

The stochastic design problem is defined as the identifitati@ vector{¢} of design variables that minimizes an
objective function, that is

Minimize f({¢$}) (1)
subject to design constraints
hi({d}) <0, j=1,...,n 2)
and side constraints
{¢p} e @)

where® € R™ denotes the admissible design space. The objective fumigtidefined in terms of quantities such
as initial, construction, repair, or downtime costs. On dftieer hand, the design constraints are given in terms of
reliability constraints and/or constrains related to detristic design requirements. The concept of robust béits

is used in the present formulation to quantify the stochgstirformance of the system under design. The reliability
constraints are defined in terms of failure probabilitiespérticular, the probability that design requirements are
satisfied within a particular reference period is used asdhability measure. Such a measure is referred to as the
first excursion probability and provides a measure of thagitality of the occurrence of unacceptable behavior of the
system (failure), based on the available information. Ttabability of failure Pr, ({¢}) corresponding to a failure
eventF); evaluated at the desidrb} can be expressed in terms of the multidimensional protaliiegral [13, 14]

Pr,({¢}) = /@IF].({CP}, {6}) a({0}{d}) d{8} (4)

wherelr, ({$},{0}) is the indicator function for failure, which is equal to 1 fifet system fails and zero otherwise;
and{6},0,,« = 1,...,n, lying in © € R™ is the vector that represents the uncertain system paresrietelved

in the problem. The uncertain system paramef{érs are modeled using a prescribed probability density functio
q({8}|{¢}) thatincorporates available knowledge about the systenstRectural systems under stochastic excitation
the multidimensional integral [Eqg. (4)], in general, inve$ a large number of uncertain parameters (in the order
of thousands). Therefore, the reliability estimation fagigen design constitutes a high dimensional problem that
is extremely demanding from a numerical point of view. A migaiediction error—that is, the error between the
response of the actual system and the response of the moldel-eam be considered in the formulation [15, 16]. In
this case the prediction error may be modeled probabéiyiby augmenting the vectd®} to form an uncertain
parameter vector composed of both system model parameatersleas model prediction errors. The failure domain
Qr, ({$}) corresponding to the failure eveh} evaluated at the designp} is described in terms of a performance
functiong; as

Qr,({0}) = {{0} | g;({}, {0}) <0} (5)
Then, the probability of failure also can be expressed im$awf the failure domain in the form
Pr,({$}) = / q({0}{d})d{o} (6)
Qr;({6})

J
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With the previous notation, a reliability constraint canvinétten as

hi({d}) = Pr,({¢}) — Pr, <0 ()

WhereP; is the target failure probability. The last inequality exxpses the requirement that the probability of system
failure must be smaller than an appropriate tolerancenibied that in the context of stochastic design a system that
corresponds to a feasible design cannot be certified wittpéetmcertainty, but with a toIeranG@j In other words,

the system will operate safely within the pre-specified ptolity of failure tolerance.

3. PHYSICAL MODEL

Base-isolated systems are designed such that the suptustrtemains elastic. Hence, the structure is modeled as a
linear elastic system in the present formulation. The badétze floors are assumed to be infinitely rigid in plane. The
superstructure and the base are modeled using three deffesedom per floor at the center of mass. Each nonlinear
isolation element is modeled explicitly using the Buoc-Wewodel [8]. Let{x,(¢)} be thenth dimensional vector of
absolute displacements for the superstructure with réspédlee base anfl\/,], [C;], and[K ] be the corresponding
mass, damping, and stiffness matrices. Also{let(t)} be the vector of base displacements with three components
and[G,] be the matrix of earthquake influence coefficients of dinmmai x 3; that is, the matrix that couples the
excitation components of the vectfi,(t)} to the degrees of freedom of the superstructure. The equatimotion

of the elastic superstructure then is expressed in the form

[M[{@s(0)} + [Csl{as (D} + [Ksl{zs (1)} = —[M][Gs]({@ ()} + {24 (1)}) (8)

where{z,(¢)} is the vector of base accelerations relative to the groundh® other hand, the equation of motion of
the base can be written as

([Gs]TMLIGs] + M) ({in ()} + {7g(1)}) + [GS] T IMLJ{Es(0)} + {fis} = {0} 9)

where[),] is the diagonal mass matrix of the rigid base drfd } is the vector containing the nonlinear isolation
element forces (three components). The characterizatisnah forces is treated in a subsequent section. Rewriting
the previous equations, the combined equation of motioh@btse-isolated structural system can be formulated in

the form
L paeed e 1L e 3 Lot o)1 o) )

R R v B NG A R E Wy

4. STOCHASTIC EXCITATION MODEL

(10)

4.1 Point-Source Stochastic Method

The ground acceleration is modeled as a nonstationaryasticlprocess. In particular, a point-source model charac-
terized by the moment magnitudé¢ and epicentral distanceis considered here [7, 17]. The model is a simple, yet
powerful, means for simulating ground motions and it hastmecessfully applied in the context of seismic engi-
neering. The time history of the ground acceleration fovagimagnitudeé/ and epicentral distanceis obtained by
modulating a white noise sequence by an envelope functionsamsequently, by a ground motion spectrum through
the following steps:

1. Generate a discrete-time Gaussian white noise sequaéticenitary intensity

t))=1/At0; j=1,..nr (11)
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wheref;, j = 1, ..., nr, are independent, identically distributed standard Gangandom variableg\t is the
sampling interval; and is the number of time instants equal to the duration of théatxen T divided by the
sampling interval.

2. The white noise sequence is modulated by an envelopadangt, M, r) at the discrete time instants.
3. Discrete Fourier transform is applied to the the moddlatkite noise sequence.
4. The resulting spectrum is normalized by the square rotiteofiverage square amplitude spectrum.

5. The normalized spectrum is multiplied by a ground motipacsrum (or radiation spectrun$)(f, M, r) at
discrete frequencieg = /T,l =1, ...,n7/2.

6. Discrete inverse Fourier transform is applied to tramafthe sequence back to the time domain to yield the
desired ground acceleration time history.

Thus, the synthetic ground motion generated from the madelfunction of the independent, identically dis-
tributed standard Gaussian random variableg = 1, ..., ny and the stochastic excitation model paramedérand
r. Details of the characterization of the envelope functi@n M, r) and the ground acceleration spectrd(y, M, r)
are provided in the subsequent sections. It is noted thaiettditation model is well suited for generating the high-
frequency components of the ground motion. Low-frequereymonents also can be introduced in the analysis by
combining the above methodology with near-fault groundiomimodels [18].

4.2 Seismicity Model

The probabilistic model for the seismic hazard at the engoteant is complemented by considering that the moment
magnitudeM and epicentral distanceare also uncertain. The uncertainty in moment magnitudeodeted by the
Gutenberg-Richter relationship truncated on the intef&4l, 8.0], which leads to the probability density function
[19]

b efbM

whereb is a regional seismicity factor. For the uncertainty in tpe&entral distance, a log-normal distribution with
mean value (km) and standard deviatiarn. (km) is used.

4.3 Envelope Function

The envelope function for the ground acceleration is represi by [7, 20]

t\*
e(t7 J\/ja T) = aj (t_) e_u’?’(t/tn) (13)
where
—0.2In(0.05) as ol o2
B “02 =02 14
a2 1+ 0,2(In(0.2) _ 1) , a3 03’ ay 02 (14)

The envelope function has a peak equal to unity whea 0.2 ¢, ande(t, M,r) = 0.05 whent = ¢, with
t, = 2.0 Ty, whereT,,, is the duration of ground motion, expressed as a sum of ageghndent and source-
dependent componef},,, = 0.05v/72 + h2 + 0.5/ f,, wherer is the epicentral distance, and the parameieaad
fa (corner frequency) are moment dependent given byAlbg= 0.15M — 0.05 and lod f,) = 2.181 — 0.496M
[17].
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4.4 Ground Motion Spectrum

The total spectrum of the motion at a sitéf, M, r) is expressed as the product of the contribution from thégaeke
sourceE(f, M), pathP(f,r), siteG(f), and type of motiord (f); i.e.,

S(f,M,r) = E(f,M) P(f,r) G(f) I(f) (15)
The source component is given by
E(va):CMO(M)Sa(va) (16)

whereC is a constant)y(M) = 103-5M+10.7 s the seismic moment, and the facty is the displacement source
spectrum given by [17]
1—¢ €

= 7 T 2

L+ (f/fa)” 1+ (f/ 1)
where the corner frequencigs and f,, and the weighting parameterare defined, respectively, as [gg) =
2.181 — 0.496M, log(f») = 2.41 — 0.408M, and lode) = 0.605 — 0.255M. The constant is given byC =
URsV F/4mpsB3 Ry, whereU is a unit-dependent factoRs is the radiation patterri/ represents the partition of
total shear-wave energy into horizontal componehtss the effect of the free surface amplificatign,and 3 are
the density and shear-wave velocity in the vicinity of therse, andR, is a reference distance. Next, the path ef-
fect P(f,r), which is another component of the process that affectsghetsum of motion at a particular site, is
represented by functions that account for geometricabsjing and attenuation

P(f,r) = Z[R(r)] e/ B)/QUB: 18

whereR(r) is the radial distance from the hypocenter to the site giveRp) = v/r2? + h2. The attenuation quantity
Q(f) is taken asg(f) = 180f°4° and the geometrical spreading function is selected @&(r)] = 1/R(r) if
R(r) < 70.0 km andZ[R(r)] = 1/70.0 otherwise [17]. The modification of seismic waves by localditions, site
effect G(f), is expressed by the multiplication of a diminution funatib(f) and an amplification functiod (/).
The diminution function accounts for the path-independesg of high frequency in the ground motions and can be
accounted for a simple filter of the form(f) = ¢~%:937/2, The amplification functioni( f) is based on empirical
curves given in [22] for generic rock sites. An average camstalue equal to 2.0 is considered. Finally, the filter that
controls the type of ground motiaf(f) is chosen ag(f) = (2rf)? for ground acceleration. The particular values
of the different parameters of the stochastic ground acatd®m model used in this work are given in Table 1. For
illustration purposes. Figure 1 shows the envelope fung¢time ground motion spectrum and a corresponding sample
of ground motion for a nominal distanee= 20 km, and moment magnitud&/ = 7.0. For a detaied discussion of
this point-source model the reader is referred to [17, 22].

As previously pointed out, the excitation model considénetlis work is based on a class of point-source models.
Inthis regard it is important to note that the proposed madhagy for robust design of base-isolated structural syste
is not limited in any way to this particular model. For exammxcitation models based on second-order processes,
filtered white noise sequences, and spectral represamatém be used as well. The particular model to be used will
depend, among other things, on the available seismic irdtiom at the site where the structural system is situated.

S(l(f’ M)

(17)

TABLE 1: Parameters for the stochastic ground acceleration model

Parameter | Numerical Value | Parameter | Numerical Value
7 (km) 20.0 o, (km) 9.0
b 1.8 U 10720
ps (gm/cc) 2.8 Bs (km/s) 3.5
V 12 Ro 0.55
F 2.0 Rg (km) 1.0
T (s) 20.0 At (S) 0.01
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FIG. 1: Envelope function, ground acceleration spectrum, and Eagrpund motion foll/ = 7.0 andr = 20 (km).

5. ISOLATION MODEL

Several isolation elements can be used to model isolatistesys. They include elastic, viscous, nonlinear fluid
dampers, hysteretic (uniaxial or biaxial) elements foimke#r elastomeric bearings, hysteretic (uniaxial or @EBxi
elements for sliding bearings, etc. Uniaxial bearings Wigsteretic behavior, such as lead rubber bearings, are used
in the present implementation. The behavior of the beaiisgsaracterized by the Buoc-Wen model as [8]
£y (t) (o0 — 2™ (t){y sgnizy(t)z(t)] + if niseven
g sy~ | BOG- O solan@=0]+8Y) ifni 19
(1) (o — 2" (t) {y sgridy ()] + B sgriz()]}) if nis odd
wherez(t) is a dimensionless hysteretic variabde;3, andy are dimensionless quantitidsy is the yield displace-
ment;x, (t) andd; (t) represent the base displacement and velocity, respegtamd sgif-) is the sign function. The
forces activated in the isolation bearing are modeled bylastie-viscoplastic model with strain hardening

Fis(t) = arke zp(t) + o @n(t) + (1— ap)ke UY (%) (20)

wherek, is the pre-yield stiffness;, is the viscous damping coefficient of the isolation eleméfit,is the yield
displacement, and, is a factor that defines the extent to which the force is linear

6. SEQUENTIAL APPROXIMATE OPTIMIZATION
6.1 Approximate Sub-Optimization Problem

The solution of the stochastic optimization problem givgrBms. (1)—(3) is obtained by transforming it into a se-
guence of sub-optimization problems having a simple eit@igebraic structure. Thus, the strategy is to construct
successive approximate analytical sub-problems. To tfdstee objective and the constraint functions are repteden
by using approximate functions dependent on the desigabias. In particular, a hybrid form of linear, reciprocal,
and quadratic approximations is considered in the presemtulation [10, 23, 24]. At thé&th iteration the approxi-
mate discrete sub-optimization problem takes the form

Minimize f({$}) (21)
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subject to

hin({d}) <0, j=1,..nc (22)
with side constraints

{p} e (23)

wheref}, andﬁjk,j = 1,...n. represent the approximate objective and constraint fanstat the current poir{ip*}
in the design space, respectively. The approximate obgfitnction is obtained as

Fel{d}) = fu({0}) + fax({}) + fae({$)) (24)

wheref1,({d}) is a linear function in terms of the design variablgs,({¢$}) is a linear function with respect to the
inverse of the design variables, afig.({$}) is a quadratic function of the design variables. They arergly

k k\2
fuon =" g;’ Do, . pution - -y LD (25)
(i+) ! (i) ! !
k
fae({d}) = =2/ Y ol ;f <j,’£ 2) (26)

(i)

where(i ™) is the group that contains the variables for which the pladtigivative of the objective function is positive
and (:~) is the group that includes the remaining variables. On therohand, the constraint functions involving
reliability measures (reliability constraints) are finstrisformed a&’,({¢}) = Ln[Pr; ({$})]. Then, the transformed

constraint functions at thith iteration are approximated in the form

RLOD) = ({0 + Ao ({0}) + By ({61) + B ({04D) (27)
e OB ({94]) DR ({04) (h)?
SIS g LI INIT R gl L (29)
@) ' @) ' '
L OO (4,
hig({b}) = 2x" Z ————"bi | — 2 (29)
) i (d)k )

t(f bk . t({ bk

B (05 = m((ory) - Y0 PO g g gy 5 PUSTH oy (30)

0 i 0 i
() ¢ (i;) ¢
wherez i+ andz i7) mean summation over the variables belonging to gr(dyip and(z‘;), respectively. Group

(i; ) contains the variables for whm?ht({an})/@cbl is positive and groui; ) includes the remaining variables.
The same type of apprOX|mat|0ns can be applied to the detestigi constralnt functions. In the above expressions

the parameterg/ andy” i are user-defined positive scalars that control the conemvaf the approximations [25].

6.2 Solution Scheme
The solution scheme of the optimization process is summaiaz follows:

1. At the beginning of theé:th design cycle X = 0,1,2,...) the objective function/ and constraint functions
hj,j = 1,...,n. are approximated by using the approach defined in the pre\deation. The approxima-
tions require function evaluationg ({$"}), h:({d*}),7 = 1,...,n.] and sensitivity analysesVf ({¢*}),

VAL ({04)), 5 = 1.
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2. Using this information an explicit sub-optimization ptem is constructed. The explicit problem is solved by
standard methods that treat the problem directly in the g@rishesign variables space to arrive at the design

{b**}.

3. The new poinf{ ¢**} is tested if it is acceptable in terms of a conservative gate that is, if f,({p**}) >
FUG**}) and if 1ty ({d*F}) > hE({d**}),5 = 1,...n.. If these conditions are satisfied (conservative step)
the point{¢**1 is used as the current design for the next cycle; thgidi§;"!} = {$**}. If the design{¢**}
does not represent a conservative step an inner loop iatatdtto affect conservatism. For functions that are not
conservative af¢**} the corresponding coefficients of the second-order termsnareased by multiplying
the corresponding scalarby a constant greater than 1. The modified approximationased to construct a
new sub-optimization problem to obtain a new point. It iseabthat the conservatism of the approximations
affects the global convergence of the optimization proge$s25, 26]. It ensures that the optimal solution of
the sub-optimization problem is a feasible solution of thginal problem.

4. The design process is continued until some convergeitedan is satisfied.

The requirement of a conservative step in the above algorign be relaxed and demand that a feasible descent
step is made instead; i.e., f{{¢p*}) < f({$**~D}) and ifht ({$**}) < I[P} ],j = 1,...n.. In this case, the
conservatism is only enforced when a feasible descent sidd not be made. This approach, which is called relaxed
conservatism, inherits the global convergence propeofi¢se algorithm that enforces conservatism at each design
cycle [26]. The level of effectiveness of the above seqatoptimization scheme depends on the degree of convexity
of the functions involved in the optimization problem. Faample, if the curvatures are not too large and relatively
uniform throughout the design space the proposed algorithinverges within a few iterations [12, 27]. For more
general cases, methods based on trust regions and lind seatitsodologies may be more appropriate [28-30].

7. IMPLEMENTATION ASPECTS
7.1 Exterior Sampling Approximation

Solution approaches to optimization problems using sttghaimulation are based on either interior or exterior
sampling techniques [31]. In the present formulation aeot sampling approximation is adopted. The approach
uses the same stream of random numbers throughout aligtesai the optimization process. Thus, the approximate
optimization problem [Eq. (21)—(23)] is transformed intdeterministic one. It is noted that several asymptoticltesu
are available for exterior sampling techniques and théér odconvergence under weak assumptions [32]. For finite-
dimensional sample sizes, the final solution depends orathple selected; i.eQx = [{61}, {62}, ..., {0~ }], where
the N samples of the uncertain parameters are drawn from the Ipitipaensity functiong({8}|{¢}). In order to

get good quality estimates for the reliability measuresé;-#mus, accurate solution to the optimization problem—the
exterior sampling approximation is implemented by sehercfV sufficiently large. A scheme that considers higher
accuracy estimates as the algorithm converges to the fihai@ois implemented in the present formulation. In
addition, the average of several independent estimatibtisedfailure probability is considered for controlling the
variability of the estimators. Numerical validations hawmdicated that for the class of problems considered in the
context of this study only a small number of independent &tian runs is required to obtain the estimates with
sufficient accuracy. For the general case, the number ofigtion runs needs to be established for the particular type
of problems under consideration.

7.2 Reliability Estimation

The reliability constraint functions; ({¢}),j = 1, ..., n. defined in Eq. (7) are given in terms of the first excursion
probability functionsPr, ({$}),j = 1,...,n.. Subset simulation is adopted in this formulation for thepose of
estimating the corresponding failure probabilities dgtine design process [9]. In the approach, the failure pritbab
ities are expressed as a product of conditional probadsldf some chosen intermediate failure events, the evatuati
of which only requires simulation of more frequent eventseiefore, a rare event simulation problem is converted
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into a sequence of more frequent event simulation probl&msexample, the failure probabilit#x, ({¢}) can be
expressed as the product

mr; —1

Pr,({$}) = P(F;a({$})) H PlFj a1 ({0})/Fjr({d})] (31)

whereP([(-)] denotes the probability of occurrendg, . ({d}) = F;({d}) is the target failure event, and
e, ({0}) € Fjmp, 1({0)) € .. € Fju({9)) (32)

is a nested sequence of failure events. Equation (31) esgsebe failure probabilit’r, ({¢}) as the product of
P[F;1({¢})] and the conditional probabilitieB[F; 1 ({$})/Fjx({d})], k = 1,...,mp, — 1. It is seen that, even

if Pr,({¢}) is small, by choosingnr, and F; »({d}),k = 1,...,mr, — 1 appropriately, the conditional probabil-
ities still can be made sufficiently large and, thereforeytban be evaluated efficiently by simulation because the
failure events are more frequent. The intermediate fadgwents are chosen adaptively using information from simu-
lated samples so that they correspond to some specifiedsvalwenditional failure probabilities. Then, to compute

Pr,({¢}) based on Eq. (31) one needs to estimate the probabifiels; ({¢d})] and P[F; x1({d})/Fjx({d})],
k=1,..,mp; — 1. The probabilityP[F; ; ({¢})] can be estimated readily by Monte Carlo as

P[Fj1({$})] = P[Fj1({$}),On] = ZIFN ({3}, {0x}) (33)

where®y = [{6:1},{02},...,{On}] are independent and identical distributed samples siedilatcording to the
probability density functiory ({6} | {$}). On the other hand, the conditional failure probabil®y F; » 11 ({d})
/F;({$})] is estimated in a similar manner; i.e.,

P[Ejr1({0))/Fix({0})] = PlFr1({0})/Fiu({$}), O8] = ZIFJ e ({03, {605}) (34)

with samples according to the conditional distributior 6} given that it lies inF; ;; that is, sample$6,, } simulated
according tog({6}|F}; 1, {$}). It is noted that the direct generation of samples simul&teah ¢, which lie in the
failure regionF; i, is not efficient since on the average it take'P[F; ,({d})] samples before one such sample
occurs. In view of this difficulty the conditional sample® ajenerated by an efficient Markov chain Monte Carlo
method based on the Metropolis algorithm [9, 33]. The prdlis are estimated usingy = 500 samples during
the initial iterations of the optimization process. Thiswher is increased t&/ = 1000 as the algorithm converges
to the final solution. Validation calculations have showatthubset simulation can be applied efficiently to first
excursion problems for a wide range of dynamical systendudting the systems considered in this study. For a
detailed discussion of the approach the reader is refeorfd].t

7.3 Sensitivity Estimation

It is clear that the characterization of the approximaténoigation problems [Egs. (21)—(23)] requires the estiorati

of the sensitivity of the transformed failure probabilitynictions. The sensitivity of the transformed failure prob-
ability functions with respect to the design variables isneated by an approach recently introduced in [34]. The
approach is based on the approximate representation ofiff@oetht quantities. The first approximation involves the
performance function while the second includes the faifn@bability function. For completeness, the basic ideas
of the methodology are presented below. Recall that thartailomain;, for a given design$} is defined as
Qp, ({$}) = {{6} | g;({d}, {6},) < 0}.1f {$p*} is the current design, the performance functjgiis approximated

in the vicinity of the current design as

3;({d}.{6}) = g;({d"}. {6}) + {89;} T {Ad} (35)
where{¢} = {d*} + {Ad}. The evaluation of the coefficien{$g;} is carried out in two steps:
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1. In a first step, for sample@®,},i = 1,..., M near the limit state surface—that ig,({$}, {6;}) ~ 0—the
performance function is evaluated at points in the neighbod of{$* }. These points are generated as

pky _ _ _ {&) -
{$PF} {¢’“}—{A¢}—”{%}HRm—l,---,QxM (36)

where the components of the vectdr,} are independent, identically distributed standard Gaassindom
variablesyQ is a positive integer anf is a user-defined small positive number. This number defiresadius
of the hyperspher€s, }/ || {&,} || R centered at the current desigé’* }.

2. In a second step, the coefficieqtsy,; } of the approximation (35) are computed by least squareshi$end,
the following set of equations is generated

) pk ) — . k ) AT {ap}
9; ({677}, {0:}) = g:({$"}. {6:}) + {8g;} T HR @)

p=i+(q—1)xM,g=1,..,Q,i=1,...M

Since the sample§{6;}),i = 1,..., M are chosen near the limit state surface the approximatemeahce
functiong; is expected to be representative, on the average, of thevibeléthe failure domain2x, in the vicinity
of the current desigq$*} [30]. Numerical experience has shown that the approximatitroduced in Eq. (35)
is adequate in the context of the proposed optimizationreehdssues such as the number of points required for
performing least squaré)andi/), and the generation of design points in the vicinity of therent design (calibration
of the radiusR) are discussed in [34].

Next, the failure domaii);, for a given design¢} is defined in terms of the normalized demand function as
Qp,({d}) = {{6} | D;j({d},{0}) > 1} whereD;({d},{0}) = 1 —g;({d}, {6}). The failure probability function,
evaluated at the current desigd”}, is then approximated locally as an explicit function of treemalized demand
aroundD; =1 as

P[D;({6F}, {0}) > D3] ~ e¥oti(P) =D

D € [l —e,1+¢€]

(38)

where D7 is a threshold of the normalized demand (in the neighbortusdd ande represents a small tolerance.

The coefficient), corresponds to the probability of failufé, ({¢*}) and the coefficienty; can be calculated by
least squares with samples generated at the last stagesgft sifnulation [9, 30, 34]. The sensitivity of tlith failure
probability function can be estimated by means of the limit:

0rx, ({0}) L P08+ (500} Ad) — Pr (94
od; {py={d*} Adp;—0 Ady (39)

lZl,...,TLd

wheren, is the total number of design variables &d!) } is a vector of length; with all entries equal to zero, except
by theith entry, which is equal to 1. Considering the definition dffiee probability in terms of the normalized demand
function, the linear expansion of the performance funcitidgq. (35), and the approximation of the failure probaypilit
function given in Eq. (38), the partial derivative of thith transformed failure probability functiofh}({$}) =
In[Pr, ({$})]} can be expressed as

ont({d}) 1  ebotbiseddn _gbo
b N B (o) < alm =P1dg;
01 gy=ory  Pr({OF})  adimo Ad;

=1

N 1%
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wherebdg,, is thelth element of the vectdfdg; }, and all other terms have been previously defined. It is nibtacthe
previous approach for estimating the gradients of therfaifwobability functions requires a single reliability &rsis
plus the evaluation of the performance functions in thenitigiof the current design. Validation calculations have
shown that this approach is quite efficient for estimatirg gbnsitivity of failure probability functions with respgec
to design variables. It is important to note that the prodasmsitivity analysis attempts to generate metrics that ca
approximate the gradient of the failure probability funas (whenever they exist) or provides information on the
local sensitivity of the failure probability functions imses where the associated gradient does not exist.

8. NUMERICAL EXAMPLE
8.1 Description

A 10-story reinforced concrete (RC) frame including a bizsdation system (composed of lead rubber bearings)
subject to a stochastic ground acceleration is consideredreumerical example. A schematic representation of the
model is shown in Fig. 2. The frame can be considered as oisagiselement of the three-dimensional model
characterized in Section 3. Each floor of the RC frame is stpgdy six columns of square shape and a height of
3 m leading to a total height of 30 m. It is assumed that the beafrtise frame are rigid in the axial direction, so
each floor can be described by a single horizontal degreeeflém. As previously pointed out (see Section 3 on the
physical model), the frame structure remains linear thhoug the duration of the ground acceleration. The Young'’s
modulus is equal t@ x 10'° N/m2. The mass of each floor is equal 1d x 10° kg, while the mass of the base

is equal t03.0 x 10° kg. A 5% critical damping is assumed in the model. The base-isolajstem is composed

of six uniaxial lead rubber bearings with hysteretic bebavihe nonlinear behavior of these devices is modeled by
the equation described in Section 5 with model parametets1, x = 1.0, = —0.65,y = 0.5, UY = 0.5 cm,

«r = 0.1, k. = 3 x 10% N/m, andc, = 0.0. Figures 3 and 4 show a schematic representation of a ledmtirub
bearing and a typical displacement-restoring force cufibeisolation element, respectively. The structural eyst

is excited horizontally by a ground acceleration that is eled as described in Section 4. For clarity and simplicity
all structural parameters are assumed to be known in thés Cagrefore, the uncertain system parameters involved in
this problem are represented by the stochastic excitatmeeirparameters. However, it is emphasized that the effect
of uncertain structural parameters can be consideredtlyitecthe methodology proposed in the previous sections.

5@5M

&

AARRRRNRY

10@3m

ARLRNRRRL
ALARRANA

Base Slab

1

 TRRRARAANN

| TAARAANAAL

7> Ground Acceleration
FIG. 2: Ten-story RC frame with base-isolation system.
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FIG. 3: Lead rubber bearing.

30

201

10}

fis (ton)

_10 b

_20 b

_30 i i i i i
-6 -4 -2 0 2 4 6
éb (cm)

FIG. 4: Typical displacement-restoring force curve of the isolalement (lead rubber bearings).

8.2 Stochastic Design Problem

The objective functionf is defined as the total area of the column elements of the fr3ime design variables
{¢} are chosen as the inertia of the columns throughout the hejghuped in 10 design variables; i.e., the inertia
of the columns of each floor constitutes each of the desigagg.orhe failure events are formulated as first passage
problems. The structural responses to be controlled arEXiveerstory drift displacements. Thus, the failure damsai
evaluated at the desidrb} are given by

Qr,({0}) = {{0} | max_[8;(ty, {¢},{6})| - 6" >0} , j=1,..,10 (40)

tr,k=1,..,2000

whered; (tx, {$}, {6}) is the relative displacement between thie- 1, j)th floor evaluated at the desidip}, ¢; are
the discrete time instants? is the critical threshold level and equal@®% of the floor height, and0} is the vector
that represents the uncertain system parameters (stmokestation model). Note that the duration of the excdati
is 20 s and the sampling interval is equal to 0.01 s (see Tgbl€hkrefore, the vectof6} has 2000 components.
This, in turn, implies that the estimation of the failure Ipability for a given design represents a high dimensional
reliability problem [see Eq. (4)]. The tolerable probalyibf failure (P;.) is set equal ta0~3. Additionally, geometric
and side constraints are incorporated in the problem. TiFebilty-based optimization problem is defined as

Min f({$})
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subject to
Pr,({0}) = Pp <0,j=1,...
Gir1 —$i<0,i=1,...
—$; +5.0x1072<0,i=1,...
Gi—70x1072<0,i=1,...
8.3 Results

.10
.9

.10
.10

107

(41)

The initial design is shown in Table 2. The results of the mjtation procedure are presented in Fig. 5 in terms of
the evolution of the objective function. It is observed tbaty a few optimization cycles are required for obtaining
convergence. In fact, most of the improvement of the objedtiinction takes place in the first three optimization
cycles. Then, the design process takes few excursion pitipaind sensitivity estimations. The details on the opti-
mization procedure for the initial design and the final desige summarized in Table 2. The numerical results also
show that the method generates a series of steadily imprfeasible designs that move toward the optimum. This
property is important from a practical viewpoint since thesign process may be stopped at any stage still leading

TABLE 2: Initial and final designs

Design variables | Initial design | Final design
$1 x 1072 (m?) 5.4 4.7
do x 1072 (m?) 5.4 4.7
$3 x 1072 (m?) 5.4 4.7
dsg x 1072 (m?) 5.4 4.6
s x 1072 (m?) 5.4 4.5
ds x 1072 (m?) 3.4 3.7
b7 x 1072 (m?) 3.4 3.5
dbs x 1072 (m?) 3.4 3.0
do x 1072 (m?) 3.4 2.1
$10 X 1072 (m4) 3.4 1.5
135 T T T T . .
N§, 130
c
9
3]
5 125¢
[}
=
©
2
8 120}
115 ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7

optimization cycle

FIG. 5: Iteration history in terms of the objective function.
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to acceptable feasible designs better than the initiaifsaestimate. This is particularly attractive for dealingh
involved problems such as robust stochastic design of isatated systems under stochastic excitation.

The effect of the base-isolation system can be observe@xtample, from a constraint violation viewpoint. To
this end, the failure probability associated with the finasidn is computed for the case where no base-isolation
system is considered. The resulting probability of ocauresof the failure events exceeds the target failure prdibabi
(P = 1073) in more than two orders of magnitude. This result highighie beneficial effect of the base-isolation
system in protecting the superstructure (in this case thstd§ RC frame). The maximum force mobilized in the
isolation bearings at the final design is of the order of 25with a maximum base displacement of about 5.0 cm.
These values are within the operational range of the dewgndstherefore, the final design is physically feasible in
terms of the forces and displacements in the lead rubbemgsaThe favorable effect of the base-isolation system
also can be illustrated by comparing the objective funatibtihe final designs obtained with and without the isolation
system. It turns out that the value of the objective functimareases about 40 for the final design of the model
without the isolation system. Thus, the structural compésmécolumns) at the final design of the model without the
isolation system are bigger than the corresponding comperté the protected system, as expected. Based on the
previous results, the beneficial effect of the base-ismtediystem is evident.

8.4 Numerical Efforts

The main numerical efforts involved in the solution of thec$tastic optimization problem are due to the estimation
of the reliability (by means of subset simulation) and itasstvity. Table 3 summarizes these numerical efforts.
The first column in Table 3 indicates the type of analysis qrened, while the second column shows the number
of times the aforementioned analysis was repeated thraughe optimization procedure. Finally, the third column
indicates the average number of simulations required fdiopming one particular type of analysis. For example, a
total of 30 reliability analyses are required for solving ttochastic optimization problem. Each of these analyses
involves (on the average) 3000 simulations. Similarly,taltof 30 estimates of the gradient of the probabilities are
required for solving the problem, and each of these anatgspsres (on the average) 1000 simulations for calibrating
the approximate model shown in Eq. (35). The last row of Tabledicates the amount of CPU time required to
solve the problem in a workstation with an Intel Core 2 Quaakcpssor. This computational cost is substantially
different for the case of direct optimization. In that cdsenumber of excursion probability and sensitivity estiora
increases dramatically with respect to the proposed apprada direct optimization the excursion probabilities and
their sensitivities need to be estimated for every changleeoflesign variables during the optimization process.

9. CONCLUSION

A general framework for robust reliability-based designbase-isolated buildings under uncertain conditions has
been presented. The reliability-based design problenrisitated as a stochastic optimization problem with a single
objective function subject to multiple reliability conaints. First excursion probabilities that account for theer-
tainties in the system parameters are used to characthazeliability of the system. The high computational cost
associated with the solution of the optimization probleradsiressed by the use of approximate reliability analyses
during portions of the optimization process. This is ackéeby implementing a sequential optimization approach
based on global conservative, convex, and separable dpmatians. The proposed approach takes into account the
uncertainty in the system model parameters explicitly ythe optimization process. Numerical experience has

TABLE 3: Summary of numerical efforts required to solve the optitidzaproblem

Type of analysis Numbq of analysis required Avergge numt_)er of simu.Iations
for solving the problem required per single analysis
Reliability 30 3000
Gradient of probability, 30 1000
CPU time (hour) 1.6
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shown that the algorithm converges in a relatively small banof optimization cycles. This, in turn, implies that
only a moderate number of reliability estimates has to béopmed during the entire design process. In addition,
numerical results have shown that the approach generatzpiarsce of steadily improved feasible designs. That is,
the design process has monotonic convergence propertiespioperty is particularly attractive for dealing with
involved problems such as robust reliability-based optation of dynamical systems under stochastic excitation. |
these problems, which are the cases of interest in this vead iteration of the optimization process is associated
with high computational costs. The results obtained in wosk and additional validation calculations highlight the
beneficial effects of base-isolation systems in reduciegstiperstructure response provided that the uncertainty in
the system parameters is considered explicitly during #ségeh process. This, in turn, implies more robust and safer
designs. Future research directions will aim at expandiagtudy reported here by considering a sensitivity argalysi
for model parameters. This type of information gives valaahsight into the effects of uncertain model parameters
on the general performance of base-isolated systems.
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